108. (2 109. (-1 + i)6 15

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
Question 109
**Finding a Power of a Complex Number**

In Exercises 107–126, use DeMoivre’s Theorem to find the indicated power of the complex number. Write the result in standard form.

107. \((1 + i)^3\)  
108. \((2 + 2i)^6\)  
109. \((-1 + i)^6\)  
110. \((3 - 3i)^8\)  
111. \(2(\sqrt{3} - i)^{5}\)  
112. \(4(1 - \sqrt{3}i)^3\)  
113. \([5(\cos 140^\circ + i \sin 140^\circ)]^{13}\)  
114. \([3(\cos 150^\circ + i \sin 150^\circ)]^{4}\)  
115. \(\left( \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right)^{10}\)  
116. \(2\left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)^{12}\)  
117. \([2(\cos \pi + i \sin \pi)]^{14}\)  
118. \((\cos 0 + i \sin 0)^{20}\)  
119. \([4(\cos 10^\circ + i \sin 10^\circ)]^{6}\)  
120. \([6(\cos 15^\circ + i \sin 15^\circ)]^{4}\)  
121. \([3(\cos \frac{\pi}{8} + i \sin \frac{\pi}{8})]^{12}\)  

Use DeMoivre’s Theorem, \((r(\cos \theta + i \sin \theta))^n = r^n (\cos(n\theta) + i \sin(n\theta))\), for calculating powers of complex numbers in polar form and convert the result to standard form \(a + bi\).
Transcribed Image Text:**Finding a Power of a Complex Number** In Exercises 107–126, use DeMoivre’s Theorem to find the indicated power of the complex number. Write the result in standard form. 107. \((1 + i)^3\) 108. \((2 + 2i)^6\) 109. \((-1 + i)^6\) 110. \((3 - 3i)^8\) 111. \(2(\sqrt{3} - i)^{5}\) 112. \(4(1 - \sqrt{3}i)^3\) 113. \([5(\cos 140^\circ + i \sin 140^\circ)]^{13}\) 114. \([3(\cos 150^\circ + i \sin 150^\circ)]^{4}\) 115. \(\left( \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right)^{10}\) 116. \(2\left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)^{12}\) 117. \([2(\cos \pi + i \sin \pi)]^{14}\) 118. \((\cos 0 + i \sin 0)^{20}\) 119. \([4(\cos 10^\circ + i \sin 10^\circ)]^{6}\) 120. \([6(\cos 15^\circ + i \sin 15^\circ)]^{4}\) 121. \([3(\cos \frac{\pi}{8} + i \sin \frac{\pi}{8})]^{12}\) Use DeMoivre’s Theorem, \((r(\cos \theta + i \sin \theta))^n = r^n (\cos(n\theta) + i \sin(n\theta))\), for calculating powers of complex numbers in polar form and convert the result to standard form \(a + bi\).
Expert Solution
Step 1

Trigonometry homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning