1000 V2/0° Load w = 377 Figure P5.85

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
icon
Concept explainers
Question

Consider the situation shown in Figure P5.85. A 1000-V-rms source delivers power to a load. The load consumes 100 kW with a power factor of 25 percent lagging. a. Find the phasor I, assuming that the capacitor is not connected to the circuit. b. Find the value of the capacitance that must be connected in parallel with the load to achieve a power factor of 100 percent. Usually, power-systems engineers rate capacitances used for power-factor correction in terms of their reactive power rating. What is the rating of this capacitance in kVAR? Assuming that this capacitance is connected, find the new value for the phasor I. c. Suppose that the source is connected to the load by a long distance. What are the potential advantages and disadvantages of connecting the capacitance across the load?

1000 V2/0°
Load
w = 377
Figure P5.85
Transcribed Image Text:1000 V2/0° Load w = 377 Figure P5.85
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Knowledge Booster
Fault analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,