100- x2 dx 8.4.9 Let r = 10 sin 0 so that d.r = 10 cos 0 de. Note that v/100 – x2 = 10 cos 0. Then T/3 V3 V3 257 T/3 cos? 0 de = 50 T/3 (1+ cos 20) d0 = 50 ( 0+ 7/6 sin 20 100 = 50 2 4 4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%

Hi, my question is how did we get the new limits pi/3 & pi/6 (circled in pink) . What did we plug the old limits into? And how was it derived. Thank you.

The text is a mathematical solution to a definite integral problem, involving trigonometric substitution. It is appropriate for an educational website explaining calculus concepts.

**Problem Description:**

- **Given Integral:** \(\int_{5}^{5\sqrt{3}} \sqrt{100 - x^2} \, dx\)

**Solution Steps:**

1. **Substitution:**
   - Let \(x = 10 \sin \theta\), which implies \(dx = 10 \cos \theta \, d\theta\).
   - Notice that \(\sqrt{100 - x^2} = 10 \cos \theta\).

2. **Changing Limits of Integration:**
   - When \(x = 5\), \(\theta = \frac{\pi}{6}\).
   - When \(x = 5\sqrt{3}\), \(\theta = \frac{\pi}{3}\).

3. **Integral Transformation:**
   - The integral becomes \(\int_{\pi/6}^{\pi/3} 100 \cos^2 \theta \, d\theta\).

4. **Use of Trigonometric Identity:**
   - Convert \(\cos^2 \theta\) using the identity \(\cos^2 \theta = \frac{1 + \cos 2\theta}{2}\).

5. **Integral Evaluation:**
   - Compute \(\int_{\pi/6}^{\pi/3} 50 (1 + \cos 2\theta) \, d\theta\).
   - The result simplifies to \(50 \left[ \theta + \frac{\sin 2\theta}{2} \right]_{\pi/6}^{\pi/3}\).

6. **Final Calculation:**
   - Perform the final computation to get \(50 \left(\frac{\pi}{3} + \frac{\sqrt{3}}{4} - \left(\frac{\pi}{6} + \frac{\sqrt{3}}{4}\right)\right) = \frac{25\pi}{3}\).

**Notes:**
- The solution involves understanding and applying trigonometric identities and substitution techniques.
- Highlights the use of integral boundaries transformation in trigonometric integrals.

This solution demonstrates a clear application of trigonometric substitution in solving definite integrals, a crucial topic in Calculus II studies.
Transcribed Image Text:The text is a mathematical solution to a definite integral problem, involving trigonometric substitution. It is appropriate for an educational website explaining calculus concepts. **Problem Description:** - **Given Integral:** \(\int_{5}^{5\sqrt{3}} \sqrt{100 - x^2} \, dx\) **Solution Steps:** 1. **Substitution:** - Let \(x = 10 \sin \theta\), which implies \(dx = 10 \cos \theta \, d\theta\). - Notice that \(\sqrt{100 - x^2} = 10 \cos \theta\). 2. **Changing Limits of Integration:** - When \(x = 5\), \(\theta = \frac{\pi}{6}\). - When \(x = 5\sqrt{3}\), \(\theta = \frac{\pi}{3}\). 3. **Integral Transformation:** - The integral becomes \(\int_{\pi/6}^{\pi/3} 100 \cos^2 \theta \, d\theta\). 4. **Use of Trigonometric Identity:** - Convert \(\cos^2 \theta\) using the identity \(\cos^2 \theta = \frac{1 + \cos 2\theta}{2}\). 5. **Integral Evaluation:** - Compute \(\int_{\pi/6}^{\pi/3} 50 (1 + \cos 2\theta) \, d\theta\). - The result simplifies to \(50 \left[ \theta + \frac{\sin 2\theta}{2} \right]_{\pi/6}^{\pi/3}\). 6. **Final Calculation:** - Perform the final computation to get \(50 \left(\frac{\pi}{3} + \frac{\sqrt{3}}{4} - \left(\frac{\pi}{6} + \frac{\sqrt{3}}{4}\right)\right) = \frac{25\pi}{3}\). **Notes:** - The solution involves understanding and applying trigonometric identities and substitution techniques. - Highlights the use of integral boundaries transformation in trigonometric integrals. This solution demonstrates a clear application of trigonometric substitution in solving definite integrals, a crucial topic in Calculus II studies.
Expert Solution
Step 1

NOTE: Refresh your page if you can't see any equations.

.

\int _5^{5\sqrt{3}}\sqrt{100-x^2}\:dx.....................(1)

now take 

x=10\sin \left(u\right)

take derivative

dx=10\cos\left(u\right)du

steps

Step by step

Solved in 5 steps with 35 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning