10. Write and simplify the integral that gives the arc length of the curve y = x³ +500 for -1 ≤ x ≤ 2. Then use a left Riemann sum with n = 40 to approximate the length of the curve. Round your answer to four decimal places.
10. Write and simplify the integral that gives the arc length of the curve y = x³ +500 for -1 ≤ x ≤ 2. Then use a left Riemann sum with n = 40 to approximate the length of the curve. Round your answer to four decimal places.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Calculating the Arc Length of a Curve
**Problem Statement:**
1. **Write and simplify the integral that gives the arc length of the curve**
\[ y = x^3 + 500 \]
for
\[ -1 \leq x \leq 2. \]
2. **Then use a left Riemann sum with \( n = 40 \) to approximate the length of the curve. Round your answer to four decimal places.**
**Steps to Solve:**
1. **Set Up the Integral for Arc Length:**
The formula for the arc length \( L \) of a curve given by \( y = f(x) \) from \( x = a \) to \( x = b \) is:
\[
L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx
\]
2. **Calculate the Derivative:**
Given \( y = x^3 + 500 \),
\[
\frac{dy}{dx} = 3x^2
\]
3. **Plug the Derivative into the Integral:**
The arc length integral becomes:
\[
L = \int_{-1}^{2} \sqrt{1 + (3x^2)^2} \, dx = \int_{-1}^{2} \sqrt{1 + 9x^2} \, dx
\]
4. **Use a Left Riemann Sum:**
To approximate the integral using a left Riemann sum with \( n = 40 \):
- The interval \([-1, 2]\) is divided into 40 equal subintervals.
- The width of each subinterval is \(\Delta x = \frac{2 - (-1)}{40} = \frac{3}{40} = 0.075\).
The left Riemann sum is:
\[
L \approx \sum_{i=0}^{39} f\left(a + i\Delta x\right) \Delta x
\]
where \( f(x) = \sqrt{1 + 9x^2} \).
Plugging in the values:
\[
L \approx \sum_{i=0}^{39} \sqrt{](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcf5ca60f-6906-44bf-a492-477ae53fc791%2F06dd6bbf-9e04-4c33-941e-1e21eec0a7d8%2Fxj79x6j_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Calculating the Arc Length of a Curve
**Problem Statement:**
1. **Write and simplify the integral that gives the arc length of the curve**
\[ y = x^3 + 500 \]
for
\[ -1 \leq x \leq 2. \]
2. **Then use a left Riemann sum with \( n = 40 \) to approximate the length of the curve. Round your answer to four decimal places.**
**Steps to Solve:**
1. **Set Up the Integral for Arc Length:**
The formula for the arc length \( L \) of a curve given by \( y = f(x) \) from \( x = a \) to \( x = b \) is:
\[
L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx
\]
2. **Calculate the Derivative:**
Given \( y = x^3 + 500 \),
\[
\frac{dy}{dx} = 3x^2
\]
3. **Plug the Derivative into the Integral:**
The arc length integral becomes:
\[
L = \int_{-1}^{2} \sqrt{1 + (3x^2)^2} \, dx = \int_{-1}^{2} \sqrt{1 + 9x^2} \, dx
\]
4. **Use a Left Riemann Sum:**
To approximate the integral using a left Riemann sum with \( n = 40 \):
- The interval \([-1, 2]\) is divided into 40 equal subintervals.
- The width of each subinterval is \(\Delta x = \frac{2 - (-1)}{40} = \frac{3}{40} = 0.075\).
The left Riemann sum is:
\[
L \approx \sum_{i=0}^{39} f\left(a + i\Delta x\right) \Delta x
\]
where \( f(x) = \sqrt{1 + 9x^2} \).
Plugging in the values:
\[
L \approx \sum_{i=0}^{39} \sqrt{
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)