10. Complete the proof to show that /KGJ≈ ZKHI in rectangle GHIJ. H G Statements 1. HJ~ GI K 2. GK ~ HK ≈ IK ≈ JK 3. ZKGJ≈ /KJG 4. 5. ZKGJ ZKHI I Reasons 1. Diagonals of a rectangle are congruent. 2. Diagonals of a rectangle bisect each other. 3. Definition of an isosceles triangle 4. 5. Transitive property of congruence ZKJG ZKHI; Alternate interior angles ZKIH ZKHI; Definition of an isosceles triangle ZKIH ZKHI; Alternate interior angles ZKJG ≈ /KHI; Definition of an isosceles triangle

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question
10. Complete the proof to show that /KGJ≈ ZKHI in
rectangle GHIJ.
H
G
Statements
1. HJ~ GI
K
2. GK ~ HK ≈ IK ≈ JK
3. ZKGJ≈ /KJG
4.
5. ZKGJ ZKHI
I
Reasons
1. Diagonals of a rectangle are
congruent.
2. Diagonals of a rectangle
bisect each other.
3. Definition of an isosceles
triangle
4.
5. Transitive property of
congruence
ZKJG ZKHI; Alternate interior angles
ZKIH ZKHI; Definition of an isosceles triangle
ZKIH ZKHI; Alternate interior angles
ZKJG ≈ /KHI; Definition of an isosceles triangle
Transcribed Image Text:10. Complete the proof to show that /KGJ≈ ZKHI in rectangle GHIJ. H G Statements 1. HJ~ GI K 2. GK ~ HK ≈ IK ≈ JK 3. ZKGJ≈ /KJG 4. 5. ZKGJ ZKHI I Reasons 1. Diagonals of a rectangle are congruent. 2. Diagonals of a rectangle bisect each other. 3. Definition of an isosceles triangle 4. 5. Transitive property of congruence ZKJG ZKHI; Alternate interior angles ZKIH ZKHI; Definition of an isosceles triangle ZKIH ZKHI; Alternate interior angles ZKJG ≈ /KHI; Definition of an isosceles triangle
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer