10-Which of the following is the approximate solution of x^3 – 3 = 0 using the Newton-Raphson method using the initial value x0 = 1?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

10-Which of the following is the approximate solution of x^3 – 3 = 0 using the Newton-Raphson method using the initial value x0 = 1?

New ton-Raphson yöntem
10 -
kullanılarak hesaplanılarn
O a) 1.1471
B) 1.4117
NS) 1.7141
O D) 1.7411
O TO) 1.4711
Transcribed Image Text:New ton-Raphson yöntem 10 - kullanılarak hesaplanılarn O a) 1.1471 B) 1.4117 NS) 1.7141 O D) 1.7411 O TO) 1.4711
Expert Solution
Step 1 Introduction
Newton Raphson method Steps (Rule)
Step-1: Find points a and b such that a<b and f(a)f(b)<0.
Step-2: Take the interval [a,b] and
find next value x0=(a+b) /2
Step-3: Find f(x0) and f(x0)
x1=x0- (f(x0)/f(x0)) 
Step-4: If f(x1)=0 then x1 is an exact root,
else x0=x1
Step-5: Repeat steps 2 to 4 until f(xi)=0 or |f(xi)|Accuracy 
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,