10 Let a₁ = , a₂ = a35 , and b = Determine whether b can be written as a linear combination of a₁, a2, and a3. In other words, determine whether weights xX₁, X2, and x3 exist, such that x₁ a₁ + x2 a2 + x3 a3 = b. Determine the weights X₁, X2, and x3 if possible. Ox₁=-3, x₂ = 0, x3 = 1 No solution OX₁-2, X₂=-1, X3 = -6 0x₁=2₁x₂=1, X3-0 A

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
---

### Linear Combinations and Vector Spaces

**Problem Statement:**

Given the vectors and the target vector:
\[ 
a_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \quad
a_2 = \begin{bmatrix} -3 \\ -4 \\ 1 \end{bmatrix}, \quad
a_3 = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}, \quad
b = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}
\]

Determine whether the vector \( b \) can be written as a linear combination of \( a_1, a_2, \) and \( a_3 \). In other words, find weights \( x_1, x_2, \) and \( x_3 \) such that:
\[ 
x_1 a_1 + x_2 a_2 + x_3 a_3 = b 
\]

**Options:**
- \( x_1 = -3, x_2 = 0, x_3 = 1 \)
- No solution
- \( x_1 = -2, x_2 = -1, x_3 = -6 \)
- \( x_1 = 2, x_2 = 1, x_3 = 0 \)

### Solution Approach:

To determine whether \( b \) is a linear combination of \( a_1, a_2, \) and \( a_3 \), we need to solve the following system of linear equations:

\[ 
x_1 \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} + 
x_2 \begin{bmatrix} -3 \\ -4 \\ 1 \end{bmatrix} + 
x_3 \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}
\]

Breaking this down into individual equations, we get:

1. \( x_1 - 3x_2 + 2x_3 = -1 \)
2. \( 2x_1 - 4x_2 + x_3 = -6 \)
3. \( -
Transcribed Image Text:--- ### Linear Combinations and Vector Spaces **Problem Statement:** Given the vectors and the target vector: \[ a_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -3 \\ -4 \\ 1 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}, \quad b = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix} \] Determine whether the vector \( b \) can be written as a linear combination of \( a_1, a_2, \) and \( a_3 \). In other words, find weights \( x_1, x_2, \) and \( x_3 \) such that: \[ x_1 a_1 + x_2 a_2 + x_3 a_3 = b \] **Options:** - \( x_1 = -3, x_2 = 0, x_3 = 1 \) - No solution - \( x_1 = -2, x_2 = -1, x_3 = -6 \) - \( x_1 = 2, x_2 = 1, x_3 = 0 \) ### Solution Approach: To determine whether \( b \) is a linear combination of \( a_1, a_2, \) and \( a_3 \), we need to solve the following system of linear equations: \[ x_1 \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ -4 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix} \] Breaking this down into individual equations, we get: 1. \( x_1 - 3x_2 + 2x_3 = -1 \) 2. \( 2x_1 - 4x_2 + x_3 = -6 \) 3. \( -
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,