-10 842 GHLHI -10 Prove that a quadrilateral with the vertices A(-2,3), B(2,6), C(76) and D(33) is a rhombus. -2 4 -6- 15= √ (10-4)² + (3-5)-² √16+4 -√20=2√5 -8 GH IJ 10 -10 Prove that the quadrilateral with vertices A(0,0), B(4,3), C(7,-1) and D(3,-4) is a square. 10 8
-10 842 GHLHI -10 Prove that a quadrilateral with the vertices A(-2,3), B(2,6), C(76) and D(33) is a rhombus. -2 4 -6- 15= √ (10-4)² + (3-5)-² √16+4 -√20=2√5 -8 GH IJ 10 -10 Prove that the quadrilateral with vertices A(0,0), B(4,3), C(7,-1) and D(3,-4) is a square. 10 8
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Min
-10 8 -6
GRAVIDA
Prove that a quadrilateral with the vertices A(-2,3), B(2,6), C76) and D(33) is a rhombus.
LHI
-100
7199
-2
4
-6-
15= √ (10-4)² + (3-5)
=√16+41 -√2O = 2√5
+(3-1)
Suf
GH IJ
111
G-H
8 10
A
-10 t
Prove that the quadrilateral with vertices A(0,0), B(4,3), C(7,-1) and D(3,-4) is a square.
10
8
6
A
2
LU
-10 -8 -6 4 -2
-21
2 4 6 8 10
-8
-10 C](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe8667a79-384d-4c93-8b97-f11a363c3cb0%2F91432b41-d531-4006-9926-f36138e3513e%2Fmxsfen_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Min
-10 8 -6
GRAVIDA
Prove that a quadrilateral with the vertices A(-2,3), B(2,6), C76) and D(33) is a rhombus.
LHI
-100
7199
-2
4
-6-
15= √ (10-4)² + (3-5)
=√16+41 -√2O = 2√5
+(3-1)
Suf
GH IJ
111
G-H
8 10
A
-10 t
Prove that the quadrilateral with vertices A(0,0), B(4,3), C(7,-1) and D(3,-4) is a square.
10
8
6
A
2
LU
-10 -8 -6 4 -2
-21
2 4 6 8 10
-8
-10 C
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)