1.2. Verify that the analytic solution of the differential equation in 1.1 above is y = e**- and then determine the upper bound value of the local truncation error in y1.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
1.2. Verify that the analytic solution of the differential equation in 1.1 above is y = e**-1
and then determine the upper bound value of the local truncation error in y1-
Transcribed Image Text:1.2. Verify that the analytic solution of the differential equation in 1.1 above is y = e**-1 and then determine the upper bound value of the local truncation error in y1-
y= コ2g 1ya1) と1
こ(01)1.3
a =1 6= 1.3
ズ。- Yo
2C,1,1 ズス=1,2
X3=1,3
Your
y.
Yo +h (m2Xeyoし
2ズ。
ミ|
ミ Roe 1, 2000
+ h (6x, y )
, 2000 + 0,1 (2x,, x,200s)
こし4640
yo.
リー*h(ュメa ya)
=14640+0,1 (マx1,2,4640)
こしる154
リ3 +6 (マズ3ソコ)
こ1,3154
えス2マ74
yu.
%3D
+0,1 (マx1,3 x 1,g154]
2,2てy
ロ
Transcribed Image Text:y= コ2g 1ya1) と1 こ(01)1.3 a =1 6= 1.3 ズ。- Yo 2C,1,1 ズス=1,2 X3=1,3 Your y. Yo +h (m2Xeyoし 2ズ。 ミ| ミ Roe 1, 2000 + h (6x, y ) , 2000 + 0,1 (2x,, x,200s) こし4640 yo. リー*h(ュメa ya) =14640+0,1 (マx1,2,4640) こしる154 リ3 +6 (マズ3ソコ) こ1,3154 えス2マ74 yu. %3D +0,1 (マx1,3 x 1,g154] 2,2てy ロ
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,