1.1 nouss2 ni boze 5. (a) f(1, 2) 6. (a) f(-1, 2) 7. (a) f(-1,2) 8. (a) fry (1, 2) (b) f(1, 2) (b) f(-1,2) (b) fyy(-1,2) (b) f(-1,2)

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
icon
Concept explainers
Question

7

S
924
5-8 Determine the signs of the partial derivatives for the
function f whose graph is shown.
nom mof
ed boekemoni rid
ZA
cels ai noilbol
bus 18 x
5. (a) f(1, 2)
6. (a) f(-1,2)
7. (a) f(-1,2)
8. (a) fry (1, 2)
2
CHAPTER 14 Partial Derivatives
ZO
(3.1
4
9. The following surfaces, labeled a, b, and c, are graphs of a
function f and its partial derivatives fr and fy. Identify each
surface and give reasons for your choices.
z 0+
-4
8-
4-0 base
-4-
-8-
-3 -2 -1 0 1 2
y
$2 ni boreuosib ow ind
8-90
41
sida atwo
-3 -2 -1 0
y
CI
1
b
2
(b) f,(1, 2)
(b) f(-1,2)
ZO
-4
-8
-3 -2 -1 0 1 2
y 10
(b) fyy(-1,2)
(b) fxy(-1,2)
3
DE
to put odi se
C
3
3
23rgia avs
2
20
s oniw sdt to
ni ti babroo
-2
X
-2
0
X
202
(etonut) booqe baiy
6 boc
mila (d)
fr(2, 1) and f,(2, 1).
10. A contour map is given for a function f. Use it to estimate
YA
-2
2
3
bril mont
(2,3mmens
13. f(x, y) = x²y³
dal
21. f(x, y) =
0
msw 21 tuos
15. f(x, y) = x² + 5xy³
muoe ban 125
17. f(x, t) = t²e
-X
19. z = ln(x + t²)
X
To will
on
11. If f(x, y) = 16 - 4x² - y², find fr(1, 2) and fy(1, 2) and
interpret these numbers as slopes. Illustrate with either hand-
drawn sketches or computer plots.
12. If f(x, y) = √√4x² - 4y², find fx(1, 0) and f,(1, 0) and
interpret these numbers as slopes. Illustrate with either hand-
drawn sketches or computer plots.X ENT
bas
ation by the
becauszib sw
13-14 Find fx and fy and graph f, fx, and fy with domains and
viewpoints that enable you to see the relationships between them.
y
H
i ai Txabai
ax + by T SU
s
6 8
23. f(x, y) =
anolla taquica iscx + dy
25. g(u, v) = (u²v – v³)5
27. R(p, q) = tan¯¹(pq²)
3
16 bas
15-40 Find the first partial derivatives of the function. H (d)
qe bat
29. F(x, y) = f* cos(e¹) dt
10
31. f(x, y, z) = x³yz² + 2yz
(g) be
=
In(x + 2y + 3z)
33. w
35. p = √t + u² cos v
37. h(x, y, z, t) = x²y cos(z/t)
39. u = √√x² + x² + ... +
40. u = sin(x₁ + 2x₂ +
246
12
16
18
22. f(x, y) = -
med
odr
xabai med odreisdw (1)
x)²
14. f(x, y)
+ x ²2/
…+nx)
=
16. f(x, y) = x²y - 3y4
odhon
18. f(x, t) = √3x + 4t
20. z = x sin(xy)
1sdW000) u +
34. w=
y
1 + x²y²
JpdW
41-44 Find the indicated partial derivative.
eº
24. wei A bm
v²
u + v² sein
26. u(r,0) = sin(r cos 0)
f(x, y) = x³
Tasu
with
(x + y)²
28.
8. Jsquat lacos
avij
X
B
30. F(a, B) = √√√₁³ + 1 dt
1.Al moitoo2 da I sidst
32. f(x, y, z) = xy²e-x²
36. u = xy/z
38. (x, y, z, t)
AMF
= y tan(x + 2z)
41. R(s, t) = test; R,(0, 1) lasing n
179
ax + By²
yz +81²
amat LESA
-lo asulay sdi stemitz (0)
Transcribed Image Text:S 924 5-8 Determine the signs of the partial derivatives for the function f whose graph is shown. nom mof ed boekemoni rid ZA cels ai noilbol bus 18 x 5. (a) f(1, 2) 6. (a) f(-1,2) 7. (a) f(-1,2) 8. (a) fry (1, 2) 2 CHAPTER 14 Partial Derivatives ZO (3.1 4 9. The following surfaces, labeled a, b, and c, are graphs of a function f and its partial derivatives fr and fy. Identify each surface and give reasons for your choices. z 0+ -4 8- 4-0 base -4- -8- -3 -2 -1 0 1 2 y $2 ni boreuosib ow ind 8-90 41 sida atwo -3 -2 -1 0 y CI 1 b 2 (b) f,(1, 2) (b) f(-1,2) ZO -4 -8 -3 -2 -1 0 1 2 y 10 (b) fyy(-1,2) (b) fxy(-1,2) 3 DE to put odi se C 3 3 23rgia avs 2 20 s oniw sdt to ni ti babroo -2 X -2 0 X 202 (etonut) booqe baiy 6 boc mila (d) fr(2, 1) and f,(2, 1). 10. A contour map is given for a function f. Use it to estimate YA -2 2 3 bril mont (2,3mmens 13. f(x, y) = x²y³ dal 21. f(x, y) = 0 msw 21 tuos 15. f(x, y) = x² + 5xy³ muoe ban 125 17. f(x, t) = t²e -X 19. z = ln(x + t²) X To will on 11. If f(x, y) = 16 - 4x² - y², find fr(1, 2) and fy(1, 2) and interpret these numbers as slopes. Illustrate with either hand- drawn sketches or computer plots. 12. If f(x, y) = √√4x² - 4y², find fx(1, 0) and f,(1, 0) and interpret these numbers as slopes. Illustrate with either hand- drawn sketches or computer plots.X ENT bas ation by the becauszib sw 13-14 Find fx and fy and graph f, fx, and fy with domains and viewpoints that enable you to see the relationships between them. y H i ai Txabai ax + by T SU s 6 8 23. f(x, y) = anolla taquica iscx + dy 25. g(u, v) = (u²v – v³)5 27. R(p, q) = tan¯¹(pq²) 3 16 bas 15-40 Find the first partial derivatives of the function. H (d) qe bat 29. F(x, y) = f* cos(e¹) dt 10 31. f(x, y, z) = x³yz² + 2yz (g) be = In(x + 2y + 3z) 33. w 35. p = √t + u² cos v 37. h(x, y, z, t) = x²y cos(z/t) 39. u = √√x² + x² + ... + 40. u = sin(x₁ + 2x₂ + 246 12 16 18 22. f(x, y) = - med odr xabai med odreisdw (1) x)² 14. f(x, y) + x ²2/ …+nx) = 16. f(x, y) = x²y - 3y4 odhon 18. f(x, t) = √3x + 4t 20. z = x sin(xy) 1sdW000) u + 34. w= y 1 + x²y² JpdW 41-44 Find the indicated partial derivative. eº 24. wei A bm v² u + v² sein 26. u(r,0) = sin(r cos 0) f(x, y) = x³ Tasu with (x + y)² 28. 8. Jsquat lacos avij X B 30. F(a, B) = √√√₁³ + 1 dt 1.Al moitoo2 da I sidst 32. f(x, y, z) = xy²e-x² 36. u = xy/z 38. (x, y, z, t) AMF = y tan(x + 2z) 41. R(s, t) = test; R,(0, 1) lasing n 179 ax + By² yz +81² amat LESA -lo asulay sdi stemitz (0)
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Operators
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education