1.1 mole of O₂ (g) and 2.2 moles of N₂ (g) are spontaneously mixed in a cylinder (volume = 30.0 L) with a movable piston. Assume both gases are ideal. (a) Explain why the mixing of O₂ and N₂ gases is spontaneous in term of chemical potential. (b) Calculate the final pressure (in N m2) of mixture when (i) the mixing occurs isothermally at 298 K; (ii) the initial temperatures of O₂ (g) and N₂ (g) are 306 K and 367 K, respectively, and after mixing, the temperature is equilibrated. State any assumption(s) in your calculations. (c) Now, the mixture in (b)(ii) is expanded isothermally and the external pressure is suddenly decreased to a final pressure of 890 Torr, determine whether the process is reversible or

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
1.1 mole of O₂ (g) and 2.2 moles of N₂ (g) are spontaneously mixed in a cylinder (volume = 30.0 L)
with a movable piston. Assume both gases are ideal.
(a)
Explain why the mixing of O₂ and N₂ gases is spontaneous in term of chemical
potential.
(b)
Calculate the final pressure (in N m2) of mixture when
(i) the mixing occurs isothermally at 298 K;
(ii) the initial temperatures of O₂ (g) and N₂ (g) are 306 K and 367 K, respectively, and after
mixing, the temperature is equilibrated. State any assumption(s) in your calculations.
(c)
) Now, the mixture in (b)(ii) is expanded isothermally and the external pressure is
suddenly decreased to a final pressure of 890 Torr, determine whether the process is reversible or
not.
Transcribed Image Text:1.1 mole of O₂ (g) and 2.2 moles of N₂ (g) are spontaneously mixed in a cylinder (volume = 30.0 L) with a movable piston. Assume both gases are ideal. (a) Explain why the mixing of O₂ and N₂ gases is spontaneous in term of chemical potential. (b) Calculate the final pressure (in N m2) of mixture when (i) the mixing occurs isothermally at 298 K; (ii) the initial temperatures of O₂ (g) and N₂ (g) are 306 K and 367 K, respectively, and after mixing, the temperature is equilibrated. State any assumption(s) in your calculations. (c) ) Now, the mixture in (b)(ii) is expanded isothermally and the external pressure is suddenly decreased to a final pressure of 890 Torr, determine whether the process is reversible or not.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY