1. Why is the probability that a continuous random variable is equal to a single number zero? (i.e. Why is P(X=a)=0 for any number a)  2. The empirical rule says that 95% of the population is within 2 standard deviations of the mean, but when I find the z-scores that mark off the middle 95% of the standard normal distribution I calculate -1.96 and 1.96. Is this a contradiction? Why or why not? In other words why are the normal distribution calculators not agreeing with the empirical rule? [2 sentences] 3. Suppose you randomly select an individual from a population that is normally distributed and they are above average. When you find out the probability of randomly selecting that individual is very very small, what are some possible explanations? In other words what does this very very small probability suggest? [3 sentences]

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

1. Why is the probability that a continuous random variable is equal to a single number zero? (i.e. Why is P(X=a)=0 for any number a) 

2. The empirical rule says that 95% of the population is within 2 standard deviations of the mean, but when I find the z-scores that mark off the middle 95% of the standard normal distribution I calculate -1.96 and 1.96. Is this a contradiction? Why or why not? In other words why are the normal distribution calculators not agreeing with the empirical rule? [2 sentences]

3. Suppose you randomly select an individual from a population that is normally distributed and they are above average. When you find out the probability of randomly selecting that individual is very very small, what are some possible explanations? In other words what does this very very small probability suggest? [3 sentences]

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman