1. w = <{A} {B} {C} {D}> 2. w = <{A} {B,C,D} {A}> 3. w = <{A} {A,B,C,D} {A}> 4. w = <{B,C} {A,D} {B,C}> 5. w = <{A,B,C,D} {A,B,C,D} >

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
  1. For each of the sequence w=<e1, e2, …, elast> below, determine whether they are subsequences of the following data sequence: <{A,B} {C,D} {A,B} {C,D} {A,B} {C,D}>, subjest to these timing constraints: 
  • Mingap=0    (interval between last event in ei and first event in ei+1 is >0) 
  • Maxgap=2    (interval between first event in ei and last event in ei+1 is <= 2) 
  • Maxspan=6  (interval between first event in e1 and last event in elast is <= 6) 
  • windowsize=1 (time between first and last events in ei <= 1) 
For each sequence \( w = \langle e1, e2, \ldots, elast \rangle \) below, determine whether they are subsequences of the following data sequence: \(\langle \{A, B\}, \{C, D\}, \{A, B\}, \{C, D\}, \{A, B\}, \{C, D\} \rangle\), subject to these timing constraints:

- **Mingap = 0** (interval between the last event in \( e_i \) and the first event in \( e_{i+1} \) is > 0)
- **Maxgap = 2** (interval between the first event in \( e_i \) and the last event in \( e_{i+1} \) is \(\leq\) 2)
- **Maxspan = 6** (interval between the first event in \( e_1 \) and last event in \( e_{last} \) is \(\leq\) 6)
- **Windowsize = 1** (time between the first and last events in \( e_i \leq\) 1)

Fill the blanks with "yes" or "no".

1. \( w = \langle \{A\}, \{B\}, \{C\}, \{D\} \rangle \)  
   ___

2. \( w = \langle \{A\}, \{B, C, D\}, \{A\} \rangle \)  
   ___

3. \( w = \langle \{A\}, \{A, B, C, D\}, \{A\} \rangle \)  
   ___

4. \( w = \langle \{B, C\}, \{A, D\}, \{B, C\} \rangle \)  
   ___

5. \( w = \langle \{A, B, C, D\}, \{A, B, C, D\} \rangle \)  
   ___
Transcribed Image Text:For each sequence \( w = \langle e1, e2, \ldots, elast \rangle \) below, determine whether they are subsequences of the following data sequence: \(\langle \{A, B\}, \{C, D\}, \{A, B\}, \{C, D\}, \{A, B\}, \{C, D\} \rangle\), subject to these timing constraints: - **Mingap = 0** (interval between the last event in \( e_i \) and the first event in \( e_{i+1} \) is > 0) - **Maxgap = 2** (interval between the first event in \( e_i \) and the last event in \( e_{i+1} \) is \(\leq\) 2) - **Maxspan = 6** (interval between the first event in \( e_1 \) and last event in \( e_{last} \) is \(\leq\) 6) - **Windowsize = 1** (time between the first and last events in \( e_i \leq\) 1) Fill the blanks with "yes" or "no". 1. \( w = \langle \{A\}, \{B\}, \{C\}, \{D\} \rangle \) ___ 2. \( w = \langle \{A\}, \{B, C, D\}, \{A\} \rangle \) ___ 3. \( w = \langle \{A\}, \{A, B, C, D\}, \{A\} \rangle \) ___ 4. \( w = \langle \{B, C\}, \{A, D\}, \{B, C\} \rangle \) ___ 5. \( w = \langle \{A, B, C, D\}, \{A, B, C, D\} \rangle \) ___
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education