1. The space between two coaxial cylinders is filled with an incompressible fluid at constant temperature. The radii of the inner and outer wetted surfaces are кR and R, respectively. The angular velocities of rotation of the inner and outer cylinders are Qi and 0. See the image to the right. Derive the velocity profile of the fluid [Ve(r)] assuming equation 3.7-28 applies and determine the torques (Tz,outer and Tz,inner) exerted by the fluid on the two cylinders needed to maintain the motion. Ω kRi R Problem 3 Equations Equation of Continuity: Spherical coordinates (r,0,0): др + at 1 д (pr²v₁) + 1 д 1 д (pv sin 0) + r² dr r sin o de (pv) = 0 (B.4-4) r sin 0 дф Equations of Motion: Spherical coordinates (r,0,0): до dv % до P + + - ot dr г де r sin 0 do a² 11+ ar2 1 д 2 sin 0 de av, sin 0. de ave + at ave dr r de ve ave r =- 1 др dr r² sin² do² V dve ve- cot e + +P&r (B.6-7) 1 др + + =- r sin 0 дф r r de дор 1 д 1 д +1 + (v sin 0) 2 dr dr 12 до sin 0 де (0)) + 1 J²ve 2 dv, + r² sin² 0 do² 12 до 2 cote dv 2 sin 0 do + P&e (B.6-8) dve до vedo P v + + + at 1 д +μ 2 dr дт V du v + cot дг г де r sin 0 до д до 1 д 0 де e) r == r sin 0 до +()+((sin 0) + 12 sin' a des² + på sin o dig sin a do "The quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [V. Vv] in Table A.7-3, because we have added to Eq. (M) the expression for (2/r)(V-v), which is zero for fluids with constant p. This gives a much simpler equation. 1 др 1 2 до do 2 cot dve + + P80 (B.6-9)

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
1.
The space between two coaxial cylinders is filled with an
incompressible fluid at constant temperature. The radii of the inner
and outer wetted surfaces are кR and R, respectively. The angular
velocities of rotation of the inner and outer cylinders are Qi and 0.
See the image to the right. Derive the velocity profile of the fluid
[Ve(r)] assuming equation 3.7-28 applies and determine the
torques (Tz,outer and Tz,inner) exerted by the fluid on the two
cylinders needed to maintain the motion.
Ω
kRi
R
Transcribed Image Text:1. The space between two coaxial cylinders is filled with an incompressible fluid at constant temperature. The radii of the inner and outer wetted surfaces are кR and R, respectively. The angular velocities of rotation of the inner and outer cylinders are Qi and 0. See the image to the right. Derive the velocity profile of the fluid [Ve(r)] assuming equation 3.7-28 applies and determine the torques (Tz,outer and Tz,inner) exerted by the fluid on the two cylinders needed to maintain the motion. Ω kRi R
Problem 3 Equations
Equation of Continuity:
Spherical coordinates (r,0,0):
др
+
at
1 д
(pr²v₁) +
1
д
1
д
(pv sin 0) +
r² dr
r sin o de
(pv) = 0
(B.4-4)
r sin 0 дф
Equations of Motion:
Spherical coordinates (r,0,0):
до
dv
% до
P
+
+
-
ot
dr г де
r sin 0 do
a²
11+
ar2
1 д
2 sin 0 de
av,
sin 0.
de
ave
+
at
ave
dr r de
ve ave
r
=-
1
др
dr
r² sin² do²
V dve ve- cot e
+
+P&r
(B.6-7)
1 др
+
+
=-
r sin 0 дф
r
r de
дор
1 д
1 д
+1
+
(v sin 0)
2 dr
dr
12 до
sin 0 де
(0)) +
1
J²ve
2 dv,
+
r² sin² 0 do²
12 до
2 cote dv
2 sin 0 do
+ P&e
(B.6-8)
dve
до
vedo
P
v
+
+
+
at
1 д
+μ
2 dr дт
V du v + cot
дг г де r sin 0 до
д до
1 д
0 де
e)
r
==
r sin 0 до
+()+((sin 0) + 12 sin' a des² + på sin o dig sin a do
"The quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [V. Vv] in Table A.7-3, because we have added
to Eq. (M) the expression for (2/r)(V-v), which is zero for fluids with constant p. This gives a much simpler equation.
1
др
1
2 до
do
2 cot dve
+
+ P80
(B.6-9)
Transcribed Image Text:Problem 3 Equations Equation of Continuity: Spherical coordinates (r,0,0): др + at 1 д (pr²v₁) + 1 д 1 д (pv sin 0) + r² dr r sin o de (pv) = 0 (B.4-4) r sin 0 дф Equations of Motion: Spherical coordinates (r,0,0): до dv % до P + + - ot dr г де r sin 0 do a² 11+ ar2 1 д 2 sin 0 de av, sin 0. de ave + at ave dr r de ve ave r =- 1 др dr r² sin² do² V dve ve- cot e + +P&r (B.6-7) 1 др + + =- r sin 0 дф r r de дор 1 д 1 д +1 + (v sin 0) 2 dr dr 12 до sin 0 де (0)) + 1 J²ve 2 dv, + r² sin² 0 do² 12 до 2 cote dv 2 sin 0 do + P&e (B.6-8) dve до vedo P v + + + at 1 д +μ 2 dr дт V du v + cot дг г де r sin 0 до д до 1 д 0 де e) r == r sin 0 до +()+((sin 0) + 12 sin' a des² + på sin o dig sin a do "The quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [V. Vv] in Table A.7-3, because we have added to Eq. (M) the expression for (2/r)(V-v), which is zero for fluids with constant p. This gives a much simpler equation. 1 др 1 2 до do 2 cot dve + + P80 (B.6-9)
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The