1. Solve the following equations by Gauss-seidel Method. Start at all value X1=X2=X3=X4=Xs=1, 9X1- 3X2 + X3 - X4 + 2Xs = 8 2X1-12X2 + 2X3- 3X4 + 2X5 = 42 -2X1 + 2X2 + 12X3 + 2X4 – Xs= 45 2X1- 3X2 - 2X3 - 15X4 + 2X5 = -25 --X1 + 3X2 + 2X3- 4X4 – 13X5 = -47

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

*Calculated Values should not be rounded off
*use 5 decimal places

1. Solve the following equations by Gauss-seidel Method.
Start at all value X1=X2=X3=X4=Xs=1,
9X1- 3X2 + X3 - X4 + 2Xs = 8
%3D
2X1- 12X2 + 2X3-3X4 + 2X5 = 42
-2X1 + 2X2 + 12X3 + 2X4 - X5= 45
2X1 - 3X2 — 2хз- 15Х4 + 2Xs %3D-25
-X1 + 3X2 + 2X3 - 4X4 – 13X5 = -47
2. Solve the following equation by bisection and false
position method using the initial range (0, 1).
F(x) = 2 cos(x) – 2sin(x) + 2e 2x
Transcribed Image Text:1. Solve the following equations by Gauss-seidel Method. Start at all value X1=X2=X3=X4=Xs=1, 9X1- 3X2 + X3 - X4 + 2Xs = 8 %3D 2X1- 12X2 + 2X3-3X4 + 2X5 = 42 -2X1 + 2X2 + 12X3 + 2X4 - X5= 45 2X1 - 3X2 — 2хз- 15Х4 + 2Xs %3D-25 -X1 + 3X2 + 2X3 - 4X4 – 13X5 = -47 2. Solve the following equation by bisection and false position method using the initial range (0, 1). F(x) = 2 cos(x) – 2sin(x) + 2e 2x
Expert Solution
steps

Step by step

Solved in 10 steps with 10 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,