1. Show that (a) (1+i)'= exp P(+2x) exp (112) 1 (b) i2i (- 4 = exp[(4n+1)л] (n = 0, ±1, ±2,...). (n = 0, ±1, ±2,...); Section 37 la) Show that (1+i)'= exp(- +2 nπT) exp (i (2) (0 (+7322) Proof (1+;) in Polar form: r = √12²+12 = √2 0 = arctum (+) = tun" " (1) = HT (1+i) = √√2 (cos() + is in (1) (n=12122) (1+i) in exponentul form using Euler's formula? (1+i) = √√2 et #) (1+i); = eiloy (√2e) ei i log (√2 e₁ =) = ; (Inll√zei =)) + Arg (√2017)) = illn (√2) +1 (4+2πh)) = ihn (12) - (+2πh) (4 So (1+i)' = @ilm (√2) - ( + 2πh) = V e - (+2πn) in (√2) e e- (= +2πth) eien (2)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Can you correct what I did wrong in part a? 

1. Show that
(a) (1+i)'= exp P(+2x) exp (112)
1
(b)
i2i
(-
4
= exp[(4n+1)л] (n = 0, ±1, ±2,...).
(n = 0, ±1, ±2,...);
Transcribed Image Text:1. Show that (a) (1+i)'= exp P(+2x) exp (112) 1 (b) i2i (- 4 = exp[(4n+1)л] (n = 0, ±1, ±2,...). (n = 0, ±1, ±2,...);
Section 37
la) Show that (1+i)'= exp(- +2 nπT) exp (i (2) (0 (+7322)
Proof
(1+;) in Polar form:
r = √12²+12 = √2
0 = arctum (+) = tun" " (1)
=
HT
(1+i) = √√2 (cos() + is in (1)
(n=12122)
(1+i) in exponentul form using Euler's formula?
(1+i) = √√2 et
#)
(1+i); = eiloy (√2e)
ei
i log (√2 e₁ =) = ; (Inll√zei =)) + Arg (√2017))
= illn (√2) +1 (4+2πh))
= ihn (12) - (+2πh)
(4
So (1+i)' = @ilm (√2) - ( + 2πh)
=
V
e
- (+2πn) in (√2)
e
e- (= +2πth) eien (2)
Transcribed Image Text:Section 37 la) Show that (1+i)'= exp(- +2 nπT) exp (i (2) (0 (+7322) Proof (1+;) in Polar form: r = √12²+12 = √2 0 = arctum (+) = tun" " (1) = HT (1+i) = √√2 (cos() + is in (1) (n=12122) (1+i) in exponentul form using Euler's formula? (1+i) = √√2 et #) (1+i); = eiloy (√2e) ei i log (√2 e₁ =) = ; (Inll√zei =)) + Arg (√2017)) = illn (√2) +1 (4+2πh)) = ihn (12) - (+2πh) (4 So (1+i)' = @ilm (√2) - ( + 2πh) = V e - (+2πn) in (√2) e e- (= +2πth) eien (2)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 1 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,