1. Show that (a) (1+i)'= exp P(+2x) exp (112) 1 (b) i2i (- 4 = exp[(4n+1)л] (n = 0, ±1, ±2,...). (n = 0, ±1, ±2,...); Section 37 la) Show that (1+i)'= exp(- +2 nπT) exp (i (2) (0 (+7322) Proof (1+;) in Polar form: r = √12²+12 = √2 0 = arctum (+) = tun" " (1) = HT (1+i) = √√2 (cos() + is in (1) (n=12122) (1+i) in exponentul form using Euler's formula? (1+i) = √√2 et #) (1+i); = eiloy (√2e) ei i log (√2 e₁ =) = ; (Inll√zei =)) + Arg (√2017)) = illn (√2) +1 (4+2πh)) = ihn (12) - (+2πh) (4 So (1+i)' = @ilm (√2) - ( + 2πh) = V e - (+2πn) in (√2) e e- (= +2πth) eien (2)
1. Show that (a) (1+i)'= exp P(+2x) exp (112) 1 (b) i2i (- 4 = exp[(4n+1)л] (n = 0, ±1, ±2,...). (n = 0, ±1, ±2,...); Section 37 la) Show that (1+i)'= exp(- +2 nπT) exp (i (2) (0 (+7322) Proof (1+;) in Polar form: r = √12²+12 = √2 0 = arctum (+) = tun" " (1) = HT (1+i) = √√2 (cos() + is in (1) (n=12122) (1+i) in exponentul form using Euler's formula? (1+i) = √√2 et #) (1+i); = eiloy (√2e) ei i log (√2 e₁ =) = ; (Inll√zei =)) + Arg (√2017)) = illn (√2) +1 (4+2πh)) = ihn (12) - (+2πh) (4 So (1+i)' = @ilm (√2) - ( + 2πh) = V e - (+2πn) in (√2) e e- (= +2πth) eien (2)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Can you correct what I did wrong in part a?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 1 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,