1. Prove the following polynomial is e(n). Use algebraic manipulations. P(n) = 5n+20 n³ - 10 n² + 10

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I have ansers all you need to know how to get answers in step by steop explanation all math work explain me too. 

ud
+
1. Prove the following polynomial is e(n). Use algebraic manipulations.
P(n)=5n+20 n³ - 10 n² + 10
(a) Prove 0(n*).
(b) Prove (n*).
Therefore,
4
3
P(n) = 5n²+ 20n - 10 m² +10
2
<5n4
+201³
+10
2
4
3
P(n) = 5n²+ 20 m²
3
<5n4 +201³ (^_) + 10 (212) 4
101)
< n²4 (5+02 + 0.000000,
<m² (52001)
>n4 (5-0.1)
4
> 4.9 n
of 6
4.9 n
M2lcv
1
OD
2
> 5n²4-10 n²
2
2 n
Σ 5n²-101² (70)² 7210, (+)2)
>
10
10 m² +10
m310
< P(n) < 5.2001 n'
Discard Neg Terms
m2100, (n))
Note this
transformatio
may be applied
only to pas
Discord Pos Terus
This
man
be applied)
to only Nag terms,
m> 100
Transcribed Image Text:ud + 1. Prove the following polynomial is e(n). Use algebraic manipulations. P(n)=5n+20 n³ - 10 n² + 10 (a) Prove 0(n*). (b) Prove (n*). Therefore, 4 3 P(n) = 5n²+ 20n - 10 m² +10 2 <5n4 +201³ +10 2 4 3 P(n) = 5n²+ 20 m² 3 <5n4 +201³ (^_) + 10 (212) 4 101) < n²4 (5+02 + 0.000000, <m² (52001) >n4 (5-0.1) 4 > 4.9 n of 6 4.9 n M2lcv 1 OD 2 > 5n²4-10 n² 2 2 n Σ 5n²-101² (70)² 7210, (+)2) > 10 10 m² +10 m310 < P(n) < 5.2001 n' Discard Neg Terms m2100, (n)) Note this transformatio may be applied only to pas Discord Pos Terus This man be applied) to only Nag terms, m> 100
Expert Solution
Step 1: Step 1

To show that: P(n)=O(n4)

We will use the definition of big oh notation to show this, we will find a positive constant (say C) and a real number N such that P(n) is bounded above by Cn4 whenever nN.

To show: P(n)Cn4whenever nN.

P(n)=5n4+20n310n2+105n4+20n3+10

In the above step, 10n2 term will be always negative, so we have removed that to get an upper bound. Next we will show that 20n3 and 10 terms is dominated by some constant times n4 .

Assume n≥100 then n1001 and (n100)41

So for n≥100 ,

 20n320n3n100=0.2n4

1010(n100)4=n4107


Hence, for n100, we have


 P(n)5n4+20n3+105n4+0.2n4+n4107

Thus, P(n) = O(n^4)

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,