1. Prove the following polynomial is 0(n¹). Use algebraic manipulations. P(n) = 5n -10 n³ + 20 n² + 50 n - 100 (a) Prove 0 (nª). (b) Prove (n¹).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

can you solve 2020 image one I also provided refrences how MY prof solved so based on that pleease solve this image 2020 one step by step formet please use from refrnecs 

Dept, NJI
First
1. Prove the following polynomial is 8(*). Use algebraic manipulations.
P(n)= 5n+20 ³-10 m² +10
(a) Prove O(n*).
3
2
P(x) = 5n² + 20 n°²- 10 m² +10
<5n4+201³
+10
Therefore,
5
<5n² + 201³ (1) + 10 (212) 4
3
≤n² (5+02 +0.0000001)
n4
n4
(m4 (5.2001)
m2lcv
(b) Prove (n*).
P(n) = 5n² + 20 n²³ - 10 m² +10
3
4
4.9 m
m2 10
Last
Discard Neg Terms
< P(x) < 5.2001 n4
m2100, (m)>)
> 5n²4-10 n²
Σ 5n" - 102² (+)² m2 10 (1) 2)
2
>
10
1
>n² (5-0.1)
> 4.9 m²
Note this
Transformation
may be applied
only to pas
Discord Pos Terms
tomm.
(This may be applied)
to only Neg terms,
m2 100
Transcribed Image Text:Dept, NJI First 1. Prove the following polynomial is 8(*). Use algebraic manipulations. P(n)= 5n+20 ³-10 m² +10 (a) Prove O(n*). 3 2 P(x) = 5n² + 20 n°²- 10 m² +10 <5n4+201³ +10 Therefore, 5 <5n² + 201³ (1) + 10 (212) 4 3 ≤n² (5+02 +0.0000001) n4 n4 (m4 (5.2001) m2lcv (b) Prove (n*). P(n) = 5n² + 20 n²³ - 10 m² +10 3 4 4.9 m m2 10 Last Discard Neg Terms < P(x) < 5.2001 n4 m2100, (m)>) > 5n²4-10 n² Σ 5n" - 102² (+)² m2 10 (1) 2) 2 > 10 1 >n² (5-0.1) > 4.9 m² Note this Transformation may be applied only to pas Discord Pos Terms tomm. (This may be applied) to only Neg terms, m2 100
1. Prove the following polynomial is 0 (n²). Use algebraic manipulations.
P(n) = 5n -10 n³ + 20 n² + 50 n - 100
(a) Prove 0 (nª).
(b) Prove (n¹).
Transcribed Image Text:1. Prove the following polynomial is 0 (n²). Use algebraic manipulations. P(n) = 5n -10 n³ + 20 n² + 50 n - 100 (a) Prove 0 (nª). (b) Prove (n¹).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,