1. Prove each of the following results: (a) |z − w|=|w-z, Vw, z = C (b) ||z − w|| ≤|zw|, Vw, z C - (c) |z| ≤ Re(z) ≤ 2, V₂ € C (d) e² = e, Vze C. 2. Simplify completely:

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Help with No 1

1. Prove each of the following results:
(a) |zw|=|w-z, w, z C
(b) ||z|-|w|| ≤|zw| vw, z
(c) 2 ≤ Re(z) ≤ 2, VEC
(d) e² = e, Vze C.
2. Simplify completely:
(a) √√1+i√3
(b) (2+3i)¹+i
Part 2. :
1. Describe and sketch each of the following sets of complex numbers:
(a) 1 < |2z - 8| < 6
(b) |z-2-i = 3
(c) Re(iz + 2) >0
(d) |z1|²+ |z+ i|² < 2.
2. :
(a) For n ≥ 1, show that 1+z+z²
1 - ₂n+1
1-2
(b) Hence, show that 1 + cos 0 + cos 20 + ... + cos n0 = 1/2+
+2¹=
1
21
sin(n+¹)0
2 sin /
Transcribed Image Text:1. Prove each of the following results: (a) |zw|=|w-z, w, z C (b) ||z|-|w|| ≤|zw| vw, z (c) 2 ≤ Re(z) ≤ 2, VEC (d) e² = e, Vze C. 2. Simplify completely: (a) √√1+i√3 (b) (2+3i)¹+i Part 2. : 1. Describe and sketch each of the following sets of complex numbers: (a) 1 < |2z - 8| < 6 (b) |z-2-i = 3 (c) Re(iz + 2) >0 (d) |z1|²+ |z+ i|² < 2. 2. : (a) For n ≥ 1, show that 1+z+z² 1 - ₂n+1 1-2 (b) Hence, show that 1 + cos 0 + cos 20 + ... + cos n0 = 1/2+ +2¹= 1 21 sin(n+¹)0 2 sin /
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,