1. Let s, =2+j8 md -, = 4+j36. Show that a. -1+- = -+- 1 -1- -2 -1 -2 = -1-2 -1 : b. C d. =2 ||

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
-103
1. Let ₁ = 2 + j¹¹8 and 2₂ = 4+j¹0³6. Show that
a.
Z₁ + Z₂ = ₁ + 2₂
b. ₁-₂₁-2₂
C.
21 22 =21²2
d.
21
=
72
Z₂
-240
2. Write the product
(j√³+j%) (j√3 + j²4)
j³ (4+j67)
in standard form.
3. Let₁=2+j3 and 2₂ =4-j5, determine in standard form
a. (5z₁+3=₂)²
b. Re(1/²).Re(₂)²
2₁ +2₂
C.
Im
21-22
Note: Re(z) means real part of complex number z
Note: Im(z) means imaginary part of complex number z
Transcribed Image Text:-103 1. Let ₁ = 2 + j¹¹8 and 2₂ = 4+j¹0³6. Show that a. Z₁ + Z₂ = ₁ + 2₂ b. ₁-₂₁-2₂ C. 21 22 =21²2 d. 21 = 72 Z₂ -240 2. Write the product (j√³+j%) (j√3 + j²4) j³ (4+j67) in standard form. 3. Let₁=2+j3 and 2₂ =4-j5, determine in standard form a. (5z₁+3=₂)² b. Re(1/²).Re(₂)² 2₁ +2₂ C. Im 21-22 Note: Re(z) means real part of complex number z Note: Im(z) means imaginary part of complex number z
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,