1. Let \( N \) be a Poisson process with intensity \( \lambda \), with \( N = \{ N(t) : t \geq 0 \} \) where \( N(t) \) denotes the number of arrivals in the interval \( (0, t] \). Let \( T_0, T_1, \ldots \) be given by \[ T_0 = 0, T_n = \inf \{ t : N(t) = n \}. \] Define the interarrival times \( X_1, X_2, \ldots \) by \[ X_n = T_n - T_{n-1} \] Show that the random variables \( X_1, X_2, \ldots \) are independent and each have exponential distribution with parameter \( \lambda \).
1. Let \( N \) be a Poisson process with intensity \( \lambda \), with \( N = \{ N(t) : t \geq 0 \} \) where \( N(t) \) denotes the number of arrivals in the interval \( (0, t] \). Let \( T_0, T_1, \ldots \) be given by \[ T_0 = 0, T_n = \inf \{ t : N(t) = n \}. \] Define the interarrival times \( X_1, X_2, \ldots \) by \[ X_n = T_n - T_{n-1} \] Show that the random variables \( X_1, X_2, \ldots \) are independent and each have exponential distribution with parameter \( \lambda \).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![1. Let \( N \) be a Poisson process with intensity \( \lambda \), with \( N = \{ N(t) : t \geq 0 \} \) where \( N(t) \) denotes the number of arrivals in the interval \( (0, t] \). Let \( T_0, T_1, \ldots \) be given by
\[ T_0 = 0, T_n = \inf \{ t : N(t) = n \}. \]
Define the interarrival times \( X_1, X_2, \ldots \) by
\[ X_n = T_n - T_{n-1} \]
Show that the random variables \( X_1, X_2, \ldots \) are independent and each have exponential distribution with parameter \( \lambda \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe15ed467-90ec-4e60-afef-3d3f6119f74d%2F17f09d59-7004-42bf-bea0-369d03c59713%2Fwwzlzmi_processed.png&w=3840&q=75)
Transcribed Image Text:1. Let \( N \) be a Poisson process with intensity \( \lambda \), with \( N = \{ N(t) : t \geq 0 \} \) where \( N(t) \) denotes the number of arrivals in the interval \( (0, t] \). Let \( T_0, T_1, \ldots \) be given by
\[ T_0 = 0, T_n = \inf \{ t : N(t) = n \}. \]
Define the interarrival times \( X_1, X_2, \ldots \) by
\[ X_n = T_n - T_{n-1} \]
Show that the random variables \( X_1, X_2, \ldots \) are independent and each have exponential distribution with parameter \( \lambda \).
AI-Generated Solution
Unlock instant AI solutions
Tap the button
to generate a solution
Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

