1. Let i, i = 1,2,..., n + 1 different nodes and let yi ER, i = 1,2,...,n + 1. The interpolating polynomial is written in Newton's form as: Pn(x) = a₁ + a₂(x − x₁) + a3(x-x₁)(x - x₂)++an+1(x − x₁)(x - xn+1), where the coefficients ai, i = 1,..., n + 1 can be computed using the following algorithm: Algorithm 1 Newton's polynomial aiyi, i=1,2,...,n+1 for k= 2: n + 1 do for i=1: k-1 do ak = = (akai)/(xk - Xi) end for end for If the coefficients ai, i = 1,..., n+1 are known, then the value of the interpolating polynomial at the point z can be computed using Horner's formula: Algorithm 2 Horner's formula S = an+1 for in-1:1 do s = a₁ + (2x₁) s end for Pn (2) = s Remark: It is noted that in the loop conditions i = a:b:c of the previous pseudo-codes a is the starting value, b is the step and c is the last value. (a) Write PYTHON 's functions coefs and evalp implementing the previously described algorithms for the coefficients of the interpolating polynomial and it's evaluation at values z using Horner's formula. Write a function newtinterp with input arguments (x, y, z), where (xi, Yi), i = 1,..., n+1, the interpolation data points and z = [21,...,m] the vector containing the m points on which we want to evaluate the interpolating polynomial. This will compute the coefficients of the interpolating polynomial a; using your function coefs and will return the values u = Pn (zi), i = 1, 2, ..., m using your function evalp. -
1. Let i, i = 1,2,..., n + 1 different nodes and let yi ER, i = 1,2,...,n + 1. The interpolating polynomial is written in Newton's form as: Pn(x) = a₁ + a₂(x − x₁) + a3(x-x₁)(x - x₂)++an+1(x − x₁)(x - xn+1), where the coefficients ai, i = 1,..., n + 1 can be computed using the following algorithm: Algorithm 1 Newton's polynomial aiyi, i=1,2,...,n+1 for k= 2: n + 1 do for i=1: k-1 do ak = = (akai)/(xk - Xi) end for end for If the coefficients ai, i = 1,..., n+1 are known, then the value of the interpolating polynomial at the point z can be computed using Horner's formula: Algorithm 2 Horner's formula S = an+1 for in-1:1 do s = a₁ + (2x₁) s end for Pn (2) = s Remark: It is noted that in the loop conditions i = a:b:c of the previous pseudo-codes a is the starting value, b is the step and c is the last value. (a) Write PYTHON 's functions coefs and evalp implementing the previously described algorithms for the coefficients of the interpolating polynomial and it's evaluation at values z using Horner's formula. Write a function newtinterp with input arguments (x, y, z), where (xi, Yi), i = 1,..., n+1, the interpolation data points and z = [21,...,m] the vector containing the m points on which we want to evaluate the interpolating polynomial. This will compute the coefficients of the interpolating polynomial a; using your function coefs and will return the values u = Pn (zi), i = 1, 2, ..., m using your function evalp. -
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education