1. Let de Z\{0, 1} be square-free. Recall that Z[√] = {s+t√ds,t = Z} with addition and multiplication inherited from C, is an integral domain (Lemma 7.11 from lectures). Let N: Z[√] \{0} → Z be the norm on Z[√d], given by N(s+t√d) = |s² — dt²|. - (a) Show that N(ab) = N(a)N(b) for all a, b = Z[√] \ {0}. (b) Show that, for a € Z[√d] \ {0}, N(a) = 1 if and only if a is a unit. (c) Find all units of Z[√-5].

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

a, b and c please

1. Let de Z\{0, 1} be square-free. Recall that
Z[√] = {s+t√ds,t = Z}
with addition and multiplication inherited from C, is an integral domain
(Lemma 7.11 from lectures). Let N: Z[√] \{0} → Z be the norm on Z[√d],
given by N(s+t√d) = |s² — dt²|.
-
(a) Show that N(ab) = N(a)N(b) for all a, b = Z[√] \ {0}.
(b) Show that, for a € Z[√d] \ {0}, N(a) = 1 if and only if a is a unit.
(c) Find all units of Z[√-5].
Transcribed Image Text:1. Let de Z\{0, 1} be square-free. Recall that Z[√] = {s+t√ds,t = Z} with addition and multiplication inherited from C, is an integral domain (Lemma 7.11 from lectures). Let N: Z[√] \{0} → Z be the norm on Z[√d], given by N(s+t√d) = |s² — dt²|. - (a) Show that N(ab) = N(a)N(b) for all a, b = Z[√] \ {0}. (b) Show that, for a € Z[√d] \ {0}, N(a) = 1 if and only if a is a unit. (c) Find all units of Z[√-5].
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,