1. Let A=3a_y+5a_z, B=a_x-2a_y+4a_z, C=a_x+a_y-a_z. a-Find A.B, b-Find AxC and IAXC| c-Find C.AxB d-Find (AXC)xB e-Find a unit vector perpendicular to both B and C f-Find the vector component of A along B, A_B 2. Express the following vectors in rectangular coordinates: a- A rho sin(phi)a_rho+rho cos(phi)a_phi-3za_z b- c- Find A.B B=5rcos(phi)a_r+r^2a_theta+sin(theta)a_phi 3- Let r=xa_x+ya_y+za_z, describe the surface defined by the equations a- r.a_x+r.a_z=12 b- |rxa_y=3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question

answer #3

1. Let A=3a_y+5a_z, B=a_x-2a_y+4a_z, C=a_x+a_y-a_z.
a-Find A.B,
b-Find AxC and AxC|
c-Find C.AxB
d-Find (AXC)xB
e-Find a unit vector perpendicular to both B and C
f-Find the vector component of A along B, A_B
2. Express the following vectors in rectangular coordinates:
a-A=rho sin(phi)a_rho+rho cos(phi)a_phi-3za_z
b- B=5rcos (phi)a_r+r^2a_theta+sin(theta)a_phi
c- Find A.B
3- Let r=xa_x+ya_y+za_z, describe the surface defined by the equations
a- r.a_x+r.a_z=12
b- |rxa_y=3
Transcribed Image Text:1. Let A=3a_y+5a_z, B=a_x-2a_y+4a_z, C=a_x+a_y-a_z. a-Find A.B, b-Find AxC and AxC| c-Find C.AxB d-Find (AXC)xB e-Find a unit vector perpendicular to both B and C f-Find the vector component of A along B, A_B 2. Express the following vectors in rectangular coordinates: a-A=rho sin(phi)a_rho+rho cos(phi)a_phi-3za_z b- B=5rcos (phi)a_r+r^2a_theta+sin(theta)a_phi c- Find A.B 3- Let r=xa_x+ya_y+za_z, describe the surface defined by the equations a- r.a_x+r.a_z=12 b- |rxa_y=3
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 8 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,