1. Let A € Mmxp and B € Mpxn. Recall that the definition of matrix multiplication gives that the (i, j)-entry of the product AB is P [AB]ij = Σ Aik Bkj. k=1 Use the definition of matrix multiplication to show that (AB)¹ = BT AT.
1. Let A € Mmxp and B € Mpxn. Recall that the definition of matrix multiplication gives that the (i, j)-entry of the product AB is P [AB]ij = Σ Aik Bkj. k=1 Use the definition of matrix multiplication to show that (AB)¹ = BT AT.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![1. Let \( A \in M_{m \times p} \) and \( B \in M_{p \times n} \). Recall that the definition of matrix multiplication gives that the \((i, j)\)-entry of the product \( AB \) is
\[
[AB]_{ij} = \sum_{k=1}^{p} A_{ik}B_{kj}.
\]
Use the definition of matrix multiplication to show that \( (AB)^T = B^T A^T \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb04829d0-4645-426e-bf1a-7ada40b0786f%2F14e0011a-c1df-461c-bd2a-c2c5d4ef5b3c%2F3ch1tyi_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1. Let \( A \in M_{m \times p} \) and \( B \in M_{p \times n} \). Recall that the definition of matrix multiplication gives that the \((i, j)\)-entry of the product \( AB \) is
\[
[AB]_{ij} = \sum_{k=1}^{p} A_{ik}B_{kj}.
\]
Use the definition of matrix multiplication to show that \( (AB)^T = B^T A^T \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: matrix multiplication related problem
Given matrices are
Now from property of product of matrices ,
Now we have to show that .
Now this is true for all
Thus we get
Step by step
Solved in 3 steps with 10 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)