1. Let A = , and define T : R² → R² by T(x) = Ax. -6 10 %3D 2 -4 10. A = Find the images under T of u = 3 1 and v = 4. 10 8 3 2. Let A = a. u = and v = 11. Let b = and let A be the Define T : R in the range of the linear transforr why not? R' by T(x) = Ax. Find T(u) and T(v). %3D In Exercises 3-6, with T defined by T(x) = Ax, find a vector x whose image under T is b, and determine whether x is unique. %3D 12. Let b = and let A be the 0 -3 6 ,b = 1 -1 3. A = -3 1 3 b in the range of the linear transfor why not? 2 -2 -1 1 -2 1 -3 ,b = 3 4. A = In Exercises 13-16, use a rectangular -5 6. u = V = and their images 1 -5 mation T. (Make a separate and reason exercise.) Describe geometrically wha in R?. 5. A = -3 %3D 7 1 -3 27 8 ,b 13. T(x) = 3 -8 6. A = %3D 1 3 1 8. 10 14. T(x) = 7. Let A be a 6 x 5 matrix. What must a and b be in order to define T: R -→ R° by T(x) = Ax? 15. T(x) = 8. How many rows and columns must a matrix A have in order to define a mapping from R$ into R’ by the rule T(x) = Ax? 16. T) =: :: 16. T(x): For Exercises 9 and 10, find all x in R that are mapped into the zero vector by the transformation x Ax for the given matrix A. 5 -57 17. Let T: R → R? be a linear tran [3 and maps v = into [1 -3 that T is linear to find the image 3101
Unitary Method
The word “unitary” comes from the word “unit”, which means a single and complete entity. In this method, we find the value of a unit product from the given number of products, and then we solve for the other number of products.
Speed, Time, and Distance
Imagine you and 3 of your friends are planning to go to the playground at 6 in the evening. Your house is one mile away from the playground and one of your friends named Jim must start at 5 pm to reach the playground by walk. The other two friends are 3 miles away.
Profit and Loss
The amount earned or lost on the sale of one or more items is referred to as the profit or loss on that item.
Units and Measurements
Measurements and comparisons are the foundation of science and engineering. We, therefore, need rules that tell us how things are measured and compared. For these measurements and comparisons, we perform certain experiments, and we will need the experiments to set up the devices.


Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images









