1. In the diagram below, a charged particle enters a region of uniform magnètic field where B = 0.6 T. The particle has an initial speed of 2.7 x 106 m/s. Keep in mind Newton's Second Law and recall the equation for centripetal acceleration: 2/r. a. Ignore gravity and first determine the sign of the charged particle if it follows the trajectory of the dashed semicircle. b. Next, use the information given to derive an equation for the charge-to-mass ratio (q/m) of the particle in terms of the particle's speed, the magnitude of the magnetic field and the radius of the semicircle. c. Lastly, calculate the charge to mass ratio of this particle. 95.0 cm B

Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter29: Magnetic Fields
Section: Chapter Questions
Problem 29.10OQ: A charged particle is traveling through a uniform magnetic field. Which of the following statements...
icon
Related questions
Question
1. In the diagram below, a charged particle enters a region of uniform magnètic field where B
0.6 T. The particle has an initial speed of 2.7 x 106 m/s. Keep in mind Newton's Second
Law and recall the equation for centripetal acceleration: 1²/r.
a. Ignore gravity and first determine the sign of the charged particle if it follows the
trajectory of the dashed semicircle.
b.
Next, use the information given to derive an equation for the charge-to-mass ratio (q/m)
of the particle in terms of the particle's speed, the magnitude of the magnetic field and
the radius of the semicircle.
c. Lastly, calculate the charge to mass ratio of this particle.
95.0 cm
B
Transcribed Image Text:1. In the diagram below, a charged particle enters a region of uniform magnètic field where B 0.6 T. The particle has an initial speed of 2.7 x 106 m/s. Keep in mind Newton's Second Law and recall the equation for centripetal acceleration: 1²/r. a. Ignore gravity and first determine the sign of the charged particle if it follows the trajectory of the dashed semicircle. b. Next, use the information given to derive an equation for the charge-to-mass ratio (q/m) of the particle in terms of the particle's speed, the magnitude of the magnetic field and the radius of the semicircle. c. Lastly, calculate the charge to mass ratio of this particle. 95.0 cm B
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Magnetic field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning