1. If the volume is doubled from 5.0 mL to 10.0 mL, what does your data show happens to the pressure? Show the pressure values in your answer. 2. If the volume is halved from 20.0 mL to 10.0 mL, what does your data show happens to the pressure? Show the pressure values in your answer.
Ideal and Real Gases
Ideal gases obey conditions of the general gas laws under all states of pressure and temperature. Ideal gases are also named perfect gases. The attributes of ideal gases are as follows,
Gas Laws
Gas laws describe the ways in which volume, temperature, pressure, and other conditions correlate when matter is in a gaseous state. The very first observations about the physical properties of gases was made by Robert Boyle in 1662. Later discoveries were made by Charles, Gay-Lussac, Avogadro, and others. Eventually, these observations were combined to produce the ideal gas law.
Gaseous State
It is well known that matter exists in different forms in our surroundings. There are five known states of matter, such as solids, gases, liquids, plasma and Bose-Einstein condensate. The last two are known newly in the recent days. Thus, the detailed forms of matter studied are solids, gases and liquids. The best example of a substance that is present in different states is water. It is solid ice, gaseous vapor or steam and liquid water depending on the temperature and pressure conditions. This is due to the difference in the intermolecular forces and distances. The occurrence of three different phases is due to the difference in the two major forces, the force which tends to tightly hold molecules i.e., forces of attraction and the disruptive forces obtained from the thermal energy of molecules.
![7. (optional) If dirécted By
Processing the Data.
DATA AND CALCULATIONS
Volume
(mL)
Pressure
(kPa)
Constant, k
(P/V or P•V)
1120
5.8.
8.3
10.8
13.3
15.8
18.3
20.8
193.12
134.56
I1043
63.14
64.82
55.56
ら2,34
/192
939
1010
T088
PROCESSING THE DATA
1. If the volume is doubled from 5.0 mL to 10.0 mL, what does your data show happens to the
pressure? Show the pressure values in your answer.
2. If the volume is halved from 20.0 mL to 10.0 mL, what does your data show happens to the
pressure? Show the pressure values in your answer.
3. If the volume is tripled from 5.0 mL to 15.0 mL, what does your data show happened to the
pressure? Show the pressure values in your answer.
4. From your answers to the first three questions and the shape of the curve in the plot of
pressure versus volume, do you think the relationship between the pressure and volume of a
confined gas is direct or inverse? Explain your answer.
5. Based on your data, what would you expect the pressure to be if the volume of the syringe
was increased to 40.0 mL. Explain or show work to support your answer.
6. Based on your data, what would you expect the pressure to be if the volume of the syringe
was decreased to 2.5 mL.
7. What experimental factors are assumed to be constant in this experiment?
8. One way to determine if a relationship is inverse or direct is to find a proportionality
constant, k, from the data. If this relationship is direct, k= P/V. If it is inverse, k = P-V. Based
on your answer to Question 4, choose one of these formulas and calculate k for the seven
ordered pairs in your data table (divide or multiply the P and V values). Show the answers in
the third column of the Data and Calculations table.
9. How constant were the values for k you obtained in Question 8? Good data may show some
minor variation, but the values for k should be relatively constant.
10. Using P, V, and k, write an equation representing Boyle's law. Write a verbal statement that
correctly expresses Boyle's law.
Chemistry with Vernier
6 -3](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff5d232f6-6049-49fc-b31d-67aaefa4b69d%2Fe8280771-ed59-42b9-89f7-8fbec15ec185%2Fag8rca5c_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)