1. If A and B are real square matrices, show that a) b) c) (A+AT) is symmetric, (A -AT) is skew-symmetric. AAT and AA are symmetric. A is symmetric if A is symmetric or skew-symmetric.
1. If A and B are real square matrices, show that a) b) c) (A+AT) is symmetric, (A -AT) is skew-symmetric. AAT and AA are symmetric. A is symmetric if A is symmetric or skew-symmetric.
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![1. If A and B are real square matrices, show that
2.
(A+AT) is symmetric, (A - AT) is skew-symmetric.
AAT and AA are symmetric.
A² is symmetric if A is symmetric or skew-symmetric.
1
2
If A = 3
4
2
1
-3 2
(A+B)¹ = A¹+ BT.
(AB)¹ =BTAT.
trace(AB)=trace(BA).
c)
3. Expand (A+B)³ if
a) A, B are commute
- 1
7. Find the result of
b) A, B are not commute
4. Show that (A − kI), (B+kI) commute for every scalar k if and only if A and B commute.
5. IF A and B are regular matrices, show that
a) (AB)`¹ = B-¹ A-¹.
b) (A-¹)¹ = (A¹)-¹.
10. For A =
6. A matrix A is called orthogonal if AA¹ = A¹A=I. If A is orthogonal, show that:
a) |A| = ±1.
b) A and A¹ are also orthogonal.
9. Find the determinant value :
[2 1 01 1 10
32
0 2 1 1 0
0 1 2 3 12
9. Given A, B and C are 3×3 matrices, |4|=2, |2B¯¹|= 48 and A B C = I, Find|C| .
2
2 4
6
5 -2
4 3 2
-4 7 1
2
1 0
1 3 -1
-4 0 1
1 1 0
1
0 2 3
and B = 0
a) Adjoint method.
b) Gauss Jordan Method.
2, verify that:
1
2
1
Find A¹ by using](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fee8a485a-c5db-440d-8f03-ce4b282b7335%2Fb0202469-944a-4d4f-983d-c66d6c96edc0%2Ftnoo1og_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1. If A and B are real square matrices, show that
2.
(A+AT) is symmetric, (A - AT) is skew-symmetric.
AAT and AA are symmetric.
A² is symmetric if A is symmetric or skew-symmetric.
1
2
If A = 3
4
2
1
-3 2
(A+B)¹ = A¹+ BT.
(AB)¹ =BTAT.
trace(AB)=trace(BA).
c)
3. Expand (A+B)³ if
a) A, B are commute
- 1
7. Find the result of
b) A, B are not commute
4. Show that (A − kI), (B+kI) commute for every scalar k if and only if A and B commute.
5. IF A and B are regular matrices, show that
a) (AB)`¹ = B-¹ A-¹.
b) (A-¹)¹ = (A¹)-¹.
10. For A =
6. A matrix A is called orthogonal if AA¹ = A¹A=I. If A is orthogonal, show that:
a) |A| = ±1.
b) A and A¹ are also orthogonal.
9. Find the determinant value :
[2 1 01 1 10
32
0 2 1 1 0
0 1 2 3 12
9. Given A, B and C are 3×3 matrices, |4|=2, |2B¯¹|= 48 and A B C = I, Find|C| .
2
2 4
6
5 -2
4 3 2
-4 7 1
2
1 0
1 3 -1
-4 0 1
1 1 0
1
0 2 3
and B = 0
a) Adjoint method.
b) Gauss Jordan Method.
2, verify that:
1
2
1
Find A¹ by using
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education