1. If 90° << 180° and cos=-, find sin.

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
**Trigonometry Problem: Finding Sine of Half the Angle**

**Problem Statement:**
If \( 90^\circ < \theta < 180^\circ \) and \(\cos \theta = -\frac{7}{11}\), find \(\sin \frac{\theta}{2}\).

**Answer Choices:**
1. \(-\frac{3\sqrt{11}}{11}\)
2. \(\frac{3\sqrt{11}}{11}\)
3. \(-\frac{11\sqrt{3}}{3}\)
4. \(\frac{11\sqrt{3}}{3}\)

To solve the problem, use the half-angle formula for sine:

\[
\sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}}
\]

Given that \( 90^\circ < \theta < 180^\circ \), this means \( \frac{\theta}{2} \) will be in the range \( 45^\circ < \frac{\theta}{2} < 90^\circ \). In this range, sine is positive.

Using the half-angle formula:

\[
\sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}
\]

Substitute \(\cos \theta = -\frac{7}{11}\) into the formula:

\[
\sin \frac{\theta}{2} = \sqrt{\frac{1 - \left(-\frac{7}{11}\right)}{2}} = \sqrt{\frac{1 + \frac{7}{11}}{2}} = \sqrt{\frac{\frac{11}{11} + \frac{7}{11}}{2}} = \sqrt{\frac{\frac{18}{11}}{2}} = \sqrt{\frac{18}{22}} = \sqrt{\frac{9}{11}} = \frac{3\sqrt{11}}{11}
\]

So, the correct answer is:

**Answer:**
\(\frac{3\sqrt{11}}{11}\)
Transcribed Image Text:**Trigonometry Problem: Finding Sine of Half the Angle** **Problem Statement:** If \( 90^\circ < \theta < 180^\circ \) and \(\cos \theta = -\frac{7}{11}\), find \(\sin \frac{\theta}{2}\). **Answer Choices:** 1. \(-\frac{3\sqrt{11}}{11}\) 2. \(\frac{3\sqrt{11}}{11}\) 3. \(-\frac{11\sqrt{3}}{3}\) 4. \(\frac{11\sqrt{3}}{3}\) To solve the problem, use the half-angle formula for sine: \[ \sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}} \] Given that \( 90^\circ < \theta < 180^\circ \), this means \( \frac{\theta}{2} \) will be in the range \( 45^\circ < \frac{\theta}{2} < 90^\circ \). In this range, sine is positive. Using the half-angle formula: \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} \] Substitute \(\cos \theta = -\frac{7}{11}\) into the formula: \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \left(-\frac{7}{11}\right)}{2}} = \sqrt{\frac{1 + \frac{7}{11}}{2}} = \sqrt{\frac{\frac{11}{11} + \frac{7}{11}}{2}} = \sqrt{\frac{\frac{18}{11}}{2}} = \sqrt{\frac{18}{22}} = \sqrt{\frac{9}{11}} = \frac{3\sqrt{11}}{11} \] So, the correct answer is: **Answer:** \(\frac{3\sqrt{11}}{11}\)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning