1. Given that the matrix A has the Singular Value Decomposition A = UEV', where: V2 6 0 0 0 0 4 0 0 0 0 0 0 6 U = 2/2 V2 V2 (a) What is the rank r of A? (b) Write down the compact form of the SVD of A

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Singular Value Decomposition (SVD) of a Matrix**

Given that the matrix \( A \) has the Singular Value Decomposition \( A = U \Sigma V^T \), where:

\[ U = \begin{pmatrix}
\frac{2}{3} & \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{6} \\
\frac{1}{3} & 0 & \frac{2\sqrt{2}}{3} \\
-\frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{6}
\end{pmatrix}, \]

\[ \Sigma = \begin{pmatrix}
6 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \]

\[ V = \begin{pmatrix}
\frac{1}{2} & 0 & \frac{1}{\sqrt{2}} & \frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{\sqrt{2}} & 0 & \frac{1}{2}
\end{pmatrix} \]

(a) **What is the rank \( r \) of \( A \)?**

(b) **Write down the compact form of the SVD of \( A \)**

(c) **Find the rank 1 matrix \( A' \) that is closest to \( A \) (with respect to the Frobenius norm).**
Transcribed Image Text:**Singular Value Decomposition (SVD) of a Matrix** Given that the matrix \( A \) has the Singular Value Decomposition \( A = U \Sigma V^T \), where: \[ U = \begin{pmatrix} \frac{2}{3} & \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{6} \\ \frac{1}{3} & 0 & \frac{2\sqrt{2}}{3} \\ -\frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{6} \end{pmatrix}, \] \[ \Sigma = \begin{pmatrix} 6 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \] \[ V = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \end{pmatrix} \] (a) **What is the rank \( r \) of \( A \)?** (b) **Write down the compact form of the SVD of \( A \)** (c) **Find the rank 1 matrix \( A' \) that is closest to \( A \) (with respect to the Frobenius norm).**
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 6 images

Blurred answer
Knowledge Booster
Matrix Factorization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,