1. Given: [(4x + 3)²D² - 12(4x + 3)Dx+64]y = 16[(4x + 3)² sec² (In 4x +31)], what special case is this? A. Cauchy-Euler Equation Legendre Equation C. Variation of Parameters D. None of the choices 2. Given: [(4x + 3)²D² - 12(4x+3)D +64]y = 16[(4x + 3)² sec² (In 4x +31)], transform it to z. A. 64(D²D+)y = 16e²sec²z C. 64(D²D+)y = 16e²sec ²2z (D² - 4D+4)y = e²² sec²2z B. (D²-4D + 4)y = e²² sec²z D. 3. Given: x³y" - 3x2y" + 6xy' - 12y = 2x + Inx, write the transformed equation in z. A. (D³-6D² +11D-12)y= 2e +2 B. (D³-D² +11D-12)y= 2e + Inz C. D. (D³-6D2 +11D-12)y=e² +2 (D²D² +11D-12)y = 2e + z

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
1. Given: [(4x + 3)²D² - 12(4x + 3)D +64]y = 16[(4x + 3)² sec² (In 4x +31)], what special case is
this?
A. Cauchy-Euler Equation
B. Legendre Equation
C.
D.
Variation of Parameters
None of the choices
2. Given: [(4x + 3)²D2 - 12(4x+3)D +64]y = 16[(4x + 3)² sec² (in 4x +31)], transform it to z.
A. 64(D²D+)y = 16e²z sec²z
C.
64(D²D+)y = 16e²² sec²2z
(D² - 4D + 4)y = e²² sec²2z
B.
(D²4D+4)y= ²² sec²z
D.
3. Given: x³y"" - 3x2y" + 6xy' - 12y = 2x* + Inx, write the transformed equation in z.
A. (D³-6D² + 11D-12)y=2e¹² + z
(D³-6D² + 11D-12)y=e² + z
(D³D² + 11D - 12)y=2e4z + z
B. (D³-D² + 11D-12)y = 2e4² + Inz
C.
D.
4. Given: x³y""-3x2y" + 6xy' - 12y = 2x* + Inx, what are the roots of the equation.
A. m = 3,2 ± √2i
m = 4,1 ± √10i
C.
B. m = = 1,4 ± √10i
D.
m = 4,1± √2i
5. Given: x³y"" - 3x²y" + 6xy' - 12y = 2x+ + Inx, write the complementary solution in x.
Ye= C₁x³ + x² [c₂cos√2x + casin√2x]
B. Y = C₁x + x[c₂cos√10x + casin√10x] D.
Ye= C₁x + x[c₂cos√10x + c3sin√10x]
c =
Ye=₁x + x[c₂cos√2x + c₂sin√2x]
Transcribed Image Text:1. Given: [(4x + 3)²D² - 12(4x + 3)D +64]y = 16[(4x + 3)² sec² (In 4x +31)], what special case is this? A. Cauchy-Euler Equation B. Legendre Equation C. D. Variation of Parameters None of the choices 2. Given: [(4x + 3)²D2 - 12(4x+3)D +64]y = 16[(4x + 3)² sec² (in 4x +31)], transform it to z. A. 64(D²D+)y = 16e²z sec²z C. 64(D²D+)y = 16e²² sec²2z (D² - 4D + 4)y = e²² sec²2z B. (D²4D+4)y= ²² sec²z D. 3. Given: x³y"" - 3x2y" + 6xy' - 12y = 2x* + Inx, write the transformed equation in z. A. (D³-6D² + 11D-12)y=2e¹² + z (D³-6D² + 11D-12)y=e² + z (D³D² + 11D - 12)y=2e4z + z B. (D³-D² + 11D-12)y = 2e4² + Inz C. D. 4. Given: x³y""-3x2y" + 6xy' - 12y = 2x* + Inx, what are the roots of the equation. A. m = 3,2 ± √2i m = 4,1 ± √10i C. B. m = = 1,4 ± √10i D. m = 4,1± √2i 5. Given: x³y"" - 3x²y" + 6xy' - 12y = 2x+ + Inx, write the complementary solution in x. Ye= C₁x³ + x² [c₂cos√2x + casin√2x] B. Y = C₁x + x[c₂cos√10x + casin√10x] D. Ye= C₁x + x[c₂cos√10x + c3sin√10x] c = Ye=₁x + x[c₂cos√2x + c₂sin√2x]
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,