1. f'(x) and ƒ' (7). Show all work, no decimals allowed in your final answer y -Cos (x) Tan(x) f'(x):_ (C - cos(x) Sin (X) cos (x) f*(x)=_ 2 2 f'(x) = d f(x) = -cos(x) tan (x) dx (= cos(x)) tan (x) f'(x)=d/-cos(x) dx sin(x) cos(x) -cos(x)2 Sin (x) f'(x) == 2 cos(x))• -Sin (x)))• Sin COS(E Sin (2 f(x)=sin(2x) sin(x) + cos (x)²³ Sin (X) ² = (7) f₁ (27) = Sin 2 (x) *Sin (x + cos (X)³ Sim (x) ²

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Title: Calculating Derivatives of a Trigonometric Function**

**Objective:**
Learn how to find the derivative of the function \( f(x) = \frac{-\cos(x)}{\tan(x)} \) and evaluate it at \( x = \frac{\pi}{4} \).

---

**Given Function:**

\[ y = \frac{-\cos(x)}{\tan(x)} \]

---

**Steps to Find the Derivative \( f'(x) \):**

1. **Rewrite Tangent:**

   Start by expressing the tangent function in terms of sine and cosine:
   \[ \tan(x) = \frac{\sin(x)}{\cos(x)} \]

2. **Apply Quotient Rule:**

   The derivative of a quotient \(\frac{u}{v}\) is given by:
   \[ f'(x) = \frac{v \cdot u' - u \cdot v'}{v^2} \]

   Applying this to our function:
   - \( u = -\cos(x) \), so \( u' = \sin(x) \)
   - \( v = \sin(x)/\cos(x) \)

3. **Calculation:**

   Substitute these into the quotient rule:
   - First, find the derivative of \( v \):
     \[ v' = \frac{d}{dx}\left(\frac{\sin(x)}{\cos(x)}\right) = \frac{\cos(x)^2 + \sin(x)^2}{\cos(x)^2} = 1 \text{ (since } \sin^2(x) + \cos^2(x) = 1\text{)} \]

   - Apply the quotient rule:
     \[ f'(x) = \frac{\left(\frac{\sin(x)}{\cos(x)}\right) \cdot \sin(x) + \cos(x) \cdot \cos(x)}{\left(\frac{\sin(x)}{\cos(x)}\right)^2} \]

   - Simplify:
     \[ f'(x) = \frac{\sin(2x) \cdot \sin(x) + \cos(x)^3}{\sin(x)^2} \]

4. **Evaluate at \( x = \frac{\pi}{4} \):**

   Substitute \( x = \frac{\pi}{4} \) into the derived expression:
Transcribed Image Text:**Title: Calculating Derivatives of a Trigonometric Function** **Objective:** Learn how to find the derivative of the function \( f(x) = \frac{-\cos(x)}{\tan(x)} \) and evaluate it at \( x = \frac{\pi}{4} \). --- **Given Function:** \[ y = \frac{-\cos(x)}{\tan(x)} \] --- **Steps to Find the Derivative \( f'(x) \):** 1. **Rewrite Tangent:** Start by expressing the tangent function in terms of sine and cosine: \[ \tan(x) = \frac{\sin(x)}{\cos(x)} \] 2. **Apply Quotient Rule:** The derivative of a quotient \(\frac{u}{v}\) is given by: \[ f'(x) = \frac{v \cdot u' - u \cdot v'}{v^2} \] Applying this to our function: - \( u = -\cos(x) \), so \( u' = \sin(x) \) - \( v = \sin(x)/\cos(x) \) 3. **Calculation:** Substitute these into the quotient rule: - First, find the derivative of \( v \): \[ v' = \frac{d}{dx}\left(\frac{\sin(x)}{\cos(x)}\right) = \frac{\cos(x)^2 + \sin(x)^2}{\cos(x)^2} = 1 \text{ (since } \sin^2(x) + \cos^2(x) = 1\text{)} \] - Apply the quotient rule: \[ f'(x) = \frac{\left(\frac{\sin(x)}{\cos(x)}\right) \cdot \sin(x) + \cos(x) \cdot \cos(x)}{\left(\frac{\sin(x)}{\cos(x)}\right)^2} \] - Simplify: \[ f'(x) = \frac{\sin(2x) \cdot \sin(x) + \cos(x)^3}{\sin(x)^2} \] 4. **Evaluate at \( x = \frac{\pi}{4} \):** Substitute \( x = \frac{\pi}{4} \) into the derived expression:
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning