1. FORMULAS TO REMEMBER L(eat f(t)) = F(s-a); c(rt-c)u₂(t)) = ecif(t)); £¹(F(s-a)) = eªt f(t) where f(t) = £¹(F(s)) ¹(e-F(s)) = f(t-c)u(t) where f(t) = ¹ (F(s)) L(f(t)8(t-c)) = f(c)e- f(t) *g(t) = [*f{r}g{t= v)dr = [*g(1)/(1-1) (F(s)G(s)) = f(t)-g(t) f(t-1)dr b) L(8(t-c)) = e-s; L(f(t) g(t)) = F(s)G(s); Find the Laplace of the following functions. a) J(t)=et et cosh(at) K(t)=sinre-+*cos(t-t)dt - İsinr
1. FORMULAS TO REMEMBER L(eat f(t)) = F(s-a); c(rt-c)u₂(t)) = ecif(t)); £¹(F(s-a)) = eªt f(t) where f(t) = £¹(F(s)) ¹(e-F(s)) = f(t-c)u(t) where f(t) = ¹ (F(s)) L(f(t)8(t-c)) = f(c)e- f(t) *g(t) = [*f{r}g{t= v)dr = [*g(1)/(1-1) (F(s)G(s)) = f(t)-g(t) f(t-1)dr b) L(8(t-c)) = e-s; L(f(t) g(t)) = F(s)G(s); Find the Laplace of the following functions. a) J(t)=et et cosh(at) K(t)=sinre-+*cos(t-t)dt - İsinr
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Plz do both parts and take a thumb up Plz do both parts and take a thumb up
![**Formulas to Remember**
1. \( \mathcal{L}(e^{at}f(t)) = F(s - a); \quad \mathcal{L}^{-1}(F(s - a)) = e^{at}f(t) \) where \( f(t) = \mathcal{L}^{-1}(F(s)) \)
2. \( \mathcal{L}( f(t - c)u_c(t) ) = e^{-cs}L(f(t)); \quad \mathcal{L}^{-1}( e^{-cs}F(s) ) = f(t-c)u_c(t) \) where \( f(t) = \mathcal{L}^{-1}(F(s)) \)
3. \( \mathcal{L}( \delta(t - c) ) = e^{-cs} \)
4. \( \mathcal{L}( f(t)\delta(t - c) ) = f(c)e^{-cs} \)
5. \( \mathcal{L}( f(t) \ast g(t) ) = F(s)G(s); \quad \mathcal{L}^{-1}( F(s)G(s) ) = f(t) \ast g(t) \)
6. \( f(t) + g(t) = \int_0^t f(t - \tau) g(\tau) d\tau = \int_0^t g(t - \tau) f(\tau) d\tau \)
---
1. Find the Laplace of the following functions.
a) \( j(t) = e^{2t} + e^t \cosh(at) \)
b) \( K(t) = \int_0^t \sin \tau \, e^{t-\tau} \cos(t - \tau) d\tau \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4b2b9d69-854a-4c26-a639-4c378ed4e00f%2F4dd53a8c-62c3-4d52-9958-3acf9ade165d%2Fl4d6vsl_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Formulas to Remember**
1. \( \mathcal{L}(e^{at}f(t)) = F(s - a); \quad \mathcal{L}^{-1}(F(s - a)) = e^{at}f(t) \) where \( f(t) = \mathcal{L}^{-1}(F(s)) \)
2. \( \mathcal{L}( f(t - c)u_c(t) ) = e^{-cs}L(f(t)); \quad \mathcal{L}^{-1}( e^{-cs}F(s) ) = f(t-c)u_c(t) \) where \( f(t) = \mathcal{L}^{-1}(F(s)) \)
3. \( \mathcal{L}( \delta(t - c) ) = e^{-cs} \)
4. \( \mathcal{L}( f(t)\delta(t - c) ) = f(c)e^{-cs} \)
5. \( \mathcal{L}( f(t) \ast g(t) ) = F(s)G(s); \quad \mathcal{L}^{-1}( F(s)G(s) ) = f(t) \ast g(t) \)
6. \( f(t) + g(t) = \int_0^t f(t - \tau) g(\tau) d\tau = \int_0^t g(t - \tau) f(\tau) d\tau \)
---
1. Find the Laplace of the following functions.
a) \( j(t) = e^{2t} + e^t \cosh(at) \)
b) \( K(t) = \int_0^t \sin \tau \, e^{t-\tau} \cos(t - \tau) d\tau \)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)