1. For the integral OA. x = 3 sec (0) OB. x = 3 tan(0) OC. None of these OD. x = 3 sin(0) OE. x = 3 tan(8) da x²√x² +9 the appropriate substitution is ..... and the resulting trigonometric integral is fsec (0) do sec (0) tan² (0) S -do -do tan (0) do .....
1. For the integral OA. x = 3 sec (0) OB. x = 3 tan(0) OC. None of these OD. x = 3 sin(0) OE. x = 3 tan(8) da x²√x² +9 the appropriate substitution is ..... and the resulting trigonometric integral is fsec (0) do sec (0) tan² (0) S -do -do tan (0) do .....
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![**Problem:**
1. For the integral \( \int \frac{dx}{x^2 \sqrt{x^2 + 9}} \), the appropriate substitution is ..... and the resulting trigonometric integral is .....
**Options:**
- **A.** \( x = 3 \sec(\theta) \)
\[
\frac{1}{9} \int \sec(\theta) \, d\theta
\]
- **B.** \( x = 3 \tan(\theta) \)
\[
\frac{1}{9} \int \frac{\sec(\theta)}{\tan^2(\theta)} \, d\theta
\]
- **C.** None of these
- **D.** \( x = 3 \sin(\theta) \)
\[
\frac{1}{3} \int \frac{1}{\sin(\theta)} \, d\theta
\]
- **E.** \( x = 3 \tan(\theta) \)
\[
\frac{1}{9} \int \frac{1}{\tan(\theta)} \, d\theta
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffb2133c9-e1e5-4d56-9c72-044227328930%2Ff7777b0d-3ad0-4c23-9276-ea27a0ba39c8%2Fovcjp14_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem:**
1. For the integral \( \int \frac{dx}{x^2 \sqrt{x^2 + 9}} \), the appropriate substitution is ..... and the resulting trigonometric integral is .....
**Options:**
- **A.** \( x = 3 \sec(\theta) \)
\[
\frac{1}{9} \int \sec(\theta) \, d\theta
\]
- **B.** \( x = 3 \tan(\theta) \)
\[
\frac{1}{9} \int \frac{\sec(\theta)}{\tan^2(\theta)} \, d\theta
\]
- **C.** None of these
- **D.** \( x = 3 \sin(\theta) \)
\[
\frac{1}{3} \int \frac{1}{\sin(\theta)} \, d\theta
\]
- **E.** \( x = 3 \tan(\theta) \)
\[
\frac{1}{9} \int \frac{1}{\tan(\theta)} \, d\theta
\]
Expert Solution

Step 1: Introduction of the given problem
Step by step
Solved in 3 steps with 5 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

