1. For the following linear program, maximize 7x112x29x3 subject to x13x23x3 4, 2x13x22x3 ≤5, 2x14x2+3x3 ≤7, x1, x2, x30 determine whether x = (³, ½, ½) is an optimal solution using the principle of com- plementary slackness. 2. For the following linear program maximize x18x23x3 subject to 2x1 +8x2 + 2x3 ≤ 4, 2x14x23x3 <4, x12x2x3 ≤ 1, x1, x2, x30 determine whether x = (0, 1, 0) is an optimal solution using the principle of com- plementary slackness.
1. For the following linear program, maximize 7x112x29x3 subject to x13x23x3 4, 2x13x22x3 ≤5, 2x14x2+3x3 ≤7, x1, x2, x30 determine whether x = (³, ½, ½) is an optimal solution using the principle of com- plementary slackness. 2. For the following linear program maximize x18x23x3 subject to 2x1 +8x2 + 2x3 ≤ 4, 2x14x23x3 <4, x12x2x3 ≤ 1, x1, x2, x30 determine whether x = (0, 1, 0) is an optimal solution using the principle of com- plementary slackness.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Part b
![1. For the following linear program,
maximize
7x112x29x3
subject to
x13x23x3 4,
2x13x22x3 ≤5,
2x14x2+3x3 ≤7,
x1, x2, x30
determine whether x = (³, ½, ½) is an optimal solution using the principle of com-
plementary slackness.
2. For the following linear program
maximize
x18x23x3
subject to 2x1 +8x2 + 2x3 ≤ 4,
2x14x23x3 <4,
x12x2x3 ≤ 1,
x1, x2, x30
determine whether x = (0, 1, 0) is an optimal solution using the principle of com-
plementary slackness.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9b030cd5-5424-4c4c-9fb9-bb5124dfa56d%2F4975601b-ecb2-4b9d-a1d8-f3456dc2cadc%2Fpocse3k_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1. For the following linear program,
maximize
7x112x29x3
subject to
x13x23x3 4,
2x13x22x3 ≤5,
2x14x2+3x3 ≤7,
x1, x2, x30
determine whether x = (³, ½, ½) is an optimal solution using the principle of com-
plementary slackness.
2. For the following linear program
maximize
x18x23x3
subject to 2x1 +8x2 + 2x3 ≤ 4,
2x14x23x3 <4,
x12x2x3 ≤ 1,
x1, x2, x30
determine whether x = (0, 1, 0) is an optimal solution using the principle of com-
plementary slackness.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)