1. For each of the following relations, indicate whether it is a function. If it is a function, give its range. If it is not a function, explain why. f:R → R such that f(x) = Vx а. b. f:R → R such that f(x) = Vx²
1. For each of the following relations, indicate whether it is a function. If it is a function, give its range. If it is not a function, explain why. f:R → R such that f(x) = Vx а. b. f:R → R such that f(x) = Vx²
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**1.** For each of the following relations, indicate whether it is a **function**. If it is a function, **give its range**. If it is not a function, **explain why**.
**a.** \( f : \mathbb{R} \rightarrow \mathbb{R} \) such that \( f(x) = \sqrt{x} \)
**b.** \( f : \mathbb{R} \rightarrow \mathbb{R} \) such that \( f(x) = \sqrt{x^2} \)
*Answer box for 1.*
---
**2.** For each of the following functions, indicate whether it is **invertible**. If it is invertible, **give its inverse**. If it is not invertible, **explain why**.
**a.** \( f : \mathbb{Z} \rightarrow \mathbb{Z} \) such that \( f(x) = x - 2 \)
**b.** \( f : \mathbb{Z} \rightarrow \mathbb{Z} \) such that \( f(x) = 2x + 1 \)
*Answer box for 2.*
---
**3.** Prove that the following function is **not injective (one-to-one)** and **not surjective (onto)**.
Hint: find a **counterexample**.
\( f : \mathbb{R} \rightarrow \mathbb{R} \) such that \( f(x) = |x - 1| \)
*Answer box for 3.*](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F672bf286-8abe-4b07-9ca1-0d5b2612956c%2F0bb67843-aefb-4367-8791-30b0a626ae0f%2Foukardo_processed.png&w=3840&q=75)
Transcribed Image Text:**1.** For each of the following relations, indicate whether it is a **function**. If it is a function, **give its range**. If it is not a function, **explain why**.
**a.** \( f : \mathbb{R} \rightarrow \mathbb{R} \) such that \( f(x) = \sqrt{x} \)
**b.** \( f : \mathbb{R} \rightarrow \mathbb{R} \) such that \( f(x) = \sqrt{x^2} \)
*Answer box for 1.*
---
**2.** For each of the following functions, indicate whether it is **invertible**. If it is invertible, **give its inverse**. If it is not invertible, **explain why**.
**a.** \( f : \mathbb{Z} \rightarrow \mathbb{Z} \) such that \( f(x) = x - 2 \)
**b.** \( f : \mathbb{Z} \rightarrow \mathbb{Z} \) such that \( f(x) = 2x + 1 \)
*Answer box for 2.*
---
**3.** Prove that the following function is **not injective (one-to-one)** and **not surjective (onto)**.
Hint: find a **counterexample**.
\( f : \mathbb{R} \rightarrow \mathbb{R} \) such that \( f(x) = |x - 1| \)
*Answer box for 3.*
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)