1. Following what we did in equations (2.14) to (2.17), show that the direct product of a vector and a 3rd-rank tensor is a 4th-rank tensor. Also show that the direct product of two 2nd-rank tensors is a 4th-rank tensor. Generalize this to show that the direct product of two tensors of ranks m and n is a tensor of rank m + n.
1. Following what we did in equations (2.14) to (2.17), show that the direct product of a vector and a 3rd-rank tensor is a 4th-rank tensor. Also show that the direct product of two 2nd-rank tensors is a 4th-rank tensor. Generalize this to show that the direct product of two tensors of ranks m and n is a tensor of rank m + n.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Subject : Mathematical Physics 2
Topic: Tensor Analysis
Please answer it in full details and show your solutions clearly.
![1. Following what we did in equations (2.14) to (2.17), show that the direct product of a vector
and a 3rd-rank tensor is a 4th-rank tensor. Also show that the direct product of two 2nd-rank tensors
is a 4th-rank tensor. Generalize this to show that the direct product of two tensors of ranks m and
n is a tensor of rank m + n.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F186f3b4d-0711-4b68-af8c-77b6a691068b%2Fd981cbf5-1cff-465f-8b65-99cd172982eb%2F739xdvf_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1. Following what we did in equations (2.14) to (2.17), show that the direct product of a vector
and a 3rd-rank tensor is a 4th-rank tensor. Also show that the direct product of two 2nd-rank tensors
is a 4th-rank tensor. Generalize this to show that the direct product of two tensors of ranks m and
n is a tensor of rank m + n.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)