1. Find using Method of Undetermined Coefficient (MUC): y(3) + y(2) + y(a) + y = 2e-2* – 4x° + cos 3x y(0) = -3, y'(0) = -1, y"(0) = 2 a.Find its general solution of the homogeneous equation: a. y = c +c,e7 + cgo* C. V. = c, + c,e* + cg@?* b. ye = c, + cze-* + cze¬2* d. y. = c, e¬* + c, cos(x) + c, sin(x) b.Find its particular solution: a. yp = -e-2* - 4x² + sin(3x) –cos (3x) - 4x² - 8x + sin(3x) - cos(3x) b. e-2* + 4x - 8 - sin(3x) – 80 8x 80 cos(3x) 80 80 d. Yp -x - 4x + -2x C. Yp 3 8x -- sin(3x) +cos (3x) C.Find its solution with a given initial value problem 2. Find the solution of the given initial value problem using Method of Variation Parameters (MVP): y(2) + y = tan x y(0) = 2, y'(0) = 1o a. y = 2 cos(x) –- 11 sin(x) + In (cos(x) )tan(x) + xsec(x) c. y = 2 cos(x) + 11 sin(x) + In (cos(x) )tan(x) + xsec(x) b. y = 2 cos(x) – 11 sin(x) + cos(x) In (tan(x) + sec(x)) CEy = 2 cos(x) + 11 sin(x) cos(x) In (tan(x) + sec(x

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I. Select the best answer to each question. In your solution sheet, write the letter of the correct answer. If your answer is not among the options, write the letter 'E'. 

1. Find using Method of Undetermined Coefficient (MUC):
y(3) + y(2) +y4) +y = 2e-2* – 4x + cos 3x
y(0) = -3, y'(0) =-1,y"(0) = 2
a.Find its general solution of the homogeneous equation:
a. y = c + Cge 7 + cze2*
C. Ve = C, + Cne* + c,e2*
b. ye = c, + cze-* + cze-2*
d. y. = c,e* + c, cos (x) + cz sin(x)
b.Find its particular solution:
a. Yp
– 2x – 4x2 +
b.
+ 4x – 8x + sin(3x) –
80
8x -
80
sin(3x) - cos(3x)
cos(3x)
80
80
С. Ур
-2x + 4x -
- 4x +
-2x
d.
3
8x + sin(3x) - cos(3x)
8x - sin(3x) + cos (3x)
80.
c.Find its solution with a given initial value problem
2. Find the solution of the given initial value problem using Method of Variation
Parameters (MVP):
y(2) + y = tan x
y(0) = 2, y'(0) = 10
a. y = 2 cos(x) – 11 sin(x) +
In (cos(x) )tan(x) + xsec(x)
c. y = 2 cos(x) + 11 sin(x) +
In (cos(x) )tan(x) t xsec(x).
b. y = 2 cos(x) – 11 sin(x) +
cos(x) In (tan(x) + sec(x))
y = 2 cos(x) + 11 sin(x) -
cos(x) ln (tan(x) + sec(x
-
Transcribed Image Text:1. Find using Method of Undetermined Coefficient (MUC): y(3) + y(2) +y4) +y = 2e-2* – 4x + cos 3x y(0) = -3, y'(0) =-1,y"(0) = 2 a.Find its general solution of the homogeneous equation: a. y = c + Cge 7 + cze2* C. Ve = C, + Cne* + c,e2* b. ye = c, + cze-* + cze-2* d. y. = c,e* + c, cos (x) + cz sin(x) b.Find its particular solution: a. Yp – 2x – 4x2 + b. + 4x – 8x + sin(3x) – 80 8x - 80 sin(3x) - cos(3x) cos(3x) 80 80 С. Ур -2x + 4x - - 4x + -2x d. 3 8x + sin(3x) - cos(3x) 8x - sin(3x) + cos (3x) 80. c.Find its solution with a given initial value problem 2. Find the solution of the given initial value problem using Method of Variation Parameters (MVP): y(2) + y = tan x y(0) = 2, y'(0) = 10 a. y = 2 cos(x) – 11 sin(x) + In (cos(x) )tan(x) + xsec(x) c. y = 2 cos(x) + 11 sin(x) + In (cos(x) )tan(x) t xsec(x). b. y = 2 cos(x) – 11 sin(x) + cos(x) In (tan(x) + sec(x)) y = 2 cos(x) + 11 sin(x) - cos(x) ln (tan(x) + sec(x -
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,