1. Find the value of k that satisfies the following equations: (a) (b) det [301 302 3a3 361 362 363 30₁ 302 303 2a1 det 3b₁5c₁1 7c₁ a₁ a2 = k det b₁ b₂ C1 C2₂ C3 E b3 2a2 2a3 3b2+5c2 3b3 +5c3 7c₂ 7c3 || a3 Γαι a2 a3 k det b₁ b2 b3 C1 C2 C3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
1. **Find the value of \( k \) that satisfies the following equations:**

   (a) \( \det \begin{bmatrix} 3a_1 & 3a_2 & 3a_3 \\ 3b_1 & 3b_2 & 3b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{bmatrix} = k \cdot \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \)

   (b) \( \det \begin{bmatrix} 2a_1 & 2a_2 & 2a_3 \\ 3b_1 + 5c_1 & 3b_2 + 5c_2 & 3b_3 + 5c_3 \\ 7c_1 & 7c_2 & 7c_3 \end{bmatrix} = k \cdot \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \)
Transcribed Image Text:1. **Find the value of \( k \) that satisfies the following equations:** (a) \( \det \begin{bmatrix} 3a_1 & 3a_2 & 3a_3 \\ 3b_1 & 3b_2 & 3b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{bmatrix} = k \cdot \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \) (b) \( \det \begin{bmatrix} 2a_1 & 2a_2 & 2a_3 \\ 3b_1 + 5c_1 & 3b_2 + 5c_2 & 3b_3 + 5c_3 \\ 7c_1 & 7c_2 & 7c_3 \end{bmatrix} = k \cdot \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,