1.) Find the standard matrix for counterclockwise rotation of 210° about the origin in R2. Then use this to find where the point (5,8) goes under this transformation.

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
100%

I'm not sure how to do the counter clockwise rotations from the origin in this example?

**Topic: Linear Transformations in Euclidean Space**

### Problem Statement:

1.) Find the standard matrix for a counterclockwise rotation of \(210^\circ\) about the origin in \(\mathbb{R}^2\). Then use this to determine where the point \((5, 8)\) is mapped under this transformation.

**Explanation:**

To solve this problem, we need to construct the rotation matrix for a counterclockwise rotation by an angle \(\theta\) in the 2D plane. The standard rotation matrix for an angle \(\theta\) is given by:

\[
R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}
\]

For \(\theta = 210^\circ\), we convert the angle to radians because the trigonometric functions in most mathematical settings use radians:

\[
\theta = 210^\circ = \frac{210 \pi}{180} = \frac{7\pi}{6} \text{ radians}
\]

Substituting \(\theta = \frac{7\pi}{6}\) into the rotation matrix:

\[
R\left(\frac{7\pi}{6}\right) = \begin{pmatrix} \cos\left(\frac{7\pi}{6}\right) & -\sin\left(\frac{7\pi}{6}\right) \\ \sin\left(\frac{7\pi}{6}\right) & \cos\left(\frac{7\pi}{6}\right) \end{pmatrix}
\]

Using trigonometric identities:

\[
\cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \quad \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}
\]

Thus, the rotation matrix becomes:

\[
R\left(\frac{7\pi}{6}\right) = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}
\]

**Application:**

To find where
Transcribed Image Text:**Topic: Linear Transformations in Euclidean Space** ### Problem Statement: 1.) Find the standard matrix for a counterclockwise rotation of \(210^\circ\) about the origin in \(\mathbb{R}^2\). Then use this to determine where the point \((5, 8)\) is mapped under this transformation. **Explanation:** To solve this problem, we need to construct the rotation matrix for a counterclockwise rotation by an angle \(\theta\) in the 2D plane. The standard rotation matrix for an angle \(\theta\) is given by: \[ R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \] For \(\theta = 210^\circ\), we convert the angle to radians because the trigonometric functions in most mathematical settings use radians: \[ \theta = 210^\circ = \frac{210 \pi}{180} = \frac{7\pi}{6} \text{ radians} \] Substituting \(\theta = \frac{7\pi}{6}\) into the rotation matrix: \[ R\left(\frac{7\pi}{6}\right) = \begin{pmatrix} \cos\left(\frac{7\pi}{6}\right) & -\sin\left(\frac{7\pi}{6}\right) \\ \sin\left(\frac{7\pi}{6}\right) & \cos\left(\frac{7\pi}{6}\right) \end{pmatrix} \] Using trigonometric identities: \[ \cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \quad \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \] Thus, the rotation matrix becomes: \[ R\left(\frac{7\pi}{6}\right) = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \] **Application:** To find where
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education