1.) Find the standard matrix for counterclockwise rotation of 210° about the origin in R2. Then use this to find where the point (5,8) goes under this transformation.
1.) Find the standard matrix for counterclockwise rotation of 210° about the origin in R2. Then use this to find where the point (5,8) goes under this transformation.
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
100%
I'm not sure how to do the counter clockwise rotations from the origin in this example?
![**Topic: Linear Transformations in Euclidean Space**
### Problem Statement:
1.) Find the standard matrix for a counterclockwise rotation of \(210^\circ\) about the origin in \(\mathbb{R}^2\). Then use this to determine where the point \((5, 8)\) is mapped under this transformation.
**Explanation:**
To solve this problem, we need to construct the rotation matrix for a counterclockwise rotation by an angle \(\theta\) in the 2D plane. The standard rotation matrix for an angle \(\theta\) is given by:
\[
R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}
\]
For \(\theta = 210^\circ\), we convert the angle to radians because the trigonometric functions in most mathematical settings use radians:
\[
\theta = 210^\circ = \frac{210 \pi}{180} = \frac{7\pi}{6} \text{ radians}
\]
Substituting \(\theta = \frac{7\pi}{6}\) into the rotation matrix:
\[
R\left(\frac{7\pi}{6}\right) = \begin{pmatrix} \cos\left(\frac{7\pi}{6}\right) & -\sin\left(\frac{7\pi}{6}\right) \\ \sin\left(\frac{7\pi}{6}\right) & \cos\left(\frac{7\pi}{6}\right) \end{pmatrix}
\]
Using trigonometric identities:
\[
\cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \quad \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}
\]
Thus, the rotation matrix becomes:
\[
R\left(\frac{7\pi}{6}\right) = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}
\]
**Application:**
To find where](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fddff5265-cb9b-49c9-95fd-ed295bd74659%2F750ca526-b890-40f3-862b-acc307dd5ea1%2F3od4qn_processed.png&w=3840&q=75)
Transcribed Image Text:**Topic: Linear Transformations in Euclidean Space**
### Problem Statement:
1.) Find the standard matrix for a counterclockwise rotation of \(210^\circ\) about the origin in \(\mathbb{R}^2\). Then use this to determine where the point \((5, 8)\) is mapped under this transformation.
**Explanation:**
To solve this problem, we need to construct the rotation matrix for a counterclockwise rotation by an angle \(\theta\) in the 2D plane. The standard rotation matrix for an angle \(\theta\) is given by:
\[
R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}
\]
For \(\theta = 210^\circ\), we convert the angle to radians because the trigonometric functions in most mathematical settings use radians:
\[
\theta = 210^\circ = \frac{210 \pi}{180} = \frac{7\pi}{6} \text{ radians}
\]
Substituting \(\theta = \frac{7\pi}{6}\) into the rotation matrix:
\[
R\left(\frac{7\pi}{6}\right) = \begin{pmatrix} \cos\left(\frac{7\pi}{6}\right) & -\sin\left(\frac{7\pi}{6}\right) \\ \sin\left(\frac{7\pi}{6}\right) & \cos\left(\frac{7\pi}{6}\right) \end{pmatrix}
\]
Using trigonometric identities:
\[
\cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \quad \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}
\]
Thus, the rotation matrix becomes:
\[
R\left(\frac{7\pi}{6}\right) = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}
\]
**Application:**
To find where
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images

Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education