1. Find the most general antiderivative or indefinite integral for the function. (Ilint: Using a trigonometric identity might be helpful). I cot² (5) de

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
100%
1. Find the most general antiderivative or indefinite integral for the function. *(Hint: Using a trigonometric identity might be helpful).*

\[
\int \cot^2(5x) \, dx
\]
Transcribed Image Text:1. Find the most general antiderivative or indefinite integral for the function. *(Hint: Using a trigonometric identity might be helpful).* \[ \int \cot^2(5x) \, dx \]
**Problem Statement:**

2. Find a function \( f \) such that \( f'(x) = 4x^2 + 5x - 2 \) **AND** \( f(0) = 4 \).

---

**Solution Approach:**

To find the function \( f(x) \), we start by integrating the derivative \( f'(x) \).

1. **Integrate \( f'(x) \):**

   \[
   f(x) = \int (4x^2 + 5x - 2) \, dx
   \]

   - The integral of \( 4x^2 \) is \(\frac{4}{3}x^3\).
   - The integral of \( 5x \) is \(\frac{5}{2}x^2\).
   - The integral of \(-2\) is \(-2x\).
   - Don't forget to add the constant of integration \( C \).

   So, the integrated function becomes:

   \[
   f(x) = \frac{4}{3}x^3 + \frac{5}{2}x^2 - 2x + C
   \]

2. **Apply the Initial Condition \( f(0) = 4 \):**

   Substitute \( x = 0 \) in the function to find \( C \):

   \[
   4 = \frac{4}{3}(0)^3 + \frac{5}{2}(0)^2 - 2(0) + C \Rightarrow C = 4
   \]

   Therefore, the function \( f(x) \) is:

   \[
   f(x) = \frac{4}{3}x^3 + \frac{5}{2}x^2 - 2x + 4
   \]

This answer satisfies both conditions given in the problem statement: \( f'(x) = 4x^2 + 5x - 2 \) and \( f(0) = 4 \).
Transcribed Image Text:**Problem Statement:** 2. Find a function \( f \) such that \( f'(x) = 4x^2 + 5x - 2 \) **AND** \( f(0) = 4 \). --- **Solution Approach:** To find the function \( f(x) \), we start by integrating the derivative \( f'(x) \). 1. **Integrate \( f'(x) \):** \[ f(x) = \int (4x^2 + 5x - 2) \, dx \] - The integral of \( 4x^2 \) is \(\frac{4}{3}x^3\). - The integral of \( 5x \) is \(\frac{5}{2}x^2\). - The integral of \(-2\) is \(-2x\). - Don't forget to add the constant of integration \( C \). So, the integrated function becomes: \[ f(x) = \frac{4}{3}x^3 + \frac{5}{2}x^2 - 2x + C \] 2. **Apply the Initial Condition \( f(0) = 4 \):** Substitute \( x = 0 \) in the function to find \( C \): \[ 4 = \frac{4}{3}(0)^3 + \frac{5}{2}(0)^2 - 2(0) + C \Rightarrow C = 4 \] Therefore, the function \( f(x) \) is: \[ f(x) = \frac{4}{3}x^3 + \frac{5}{2}x^2 - 2x + 4 \] This answer satisfies both conditions given in the problem statement: \( f'(x) = 4x^2 + 5x - 2 \) and \( f(0) = 4 \).
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning