1. Find the Laplace transforms of (a) t°sinat (b)te" sin3t (c) cosat – cos bt (d) +tsinat t 1-cost (g) cos 2t - cos3t sint sin5t -+tsint t t t 2. Use the Laplace transform of the second derivative to derive the transformation a (a) L{sinhat}: s² –a² (b)L{coshat} = s² -a? o 3. Evaluate (a) ſte * sint dt cosat – cos bt dt e sint dt (c). t sin?t dt (e) -2t sinht dt coi cos 6t – cos 4t dt t t t 4. Find the Laplace transform from the following diagram 1 -1F 2.
1. Find the Laplace transforms of (a) t°sinat (b)te" sin3t (c) cosat – cos bt (d) +tsinat t 1-cost (g) cos 2t - cos3t sint sin5t -+tsint t t t 2. Use the Laplace transform of the second derivative to derive the transformation a (a) L{sinhat}: s² –a² (b)L{coshat} = s² -a? o 3. Evaluate (a) ſte * sint dt cosat – cos bt dt e sint dt (c). t sin?t dt (e) -2t sinht dt coi cos 6t – cos 4t dt t t t 4. Find the Laplace transform from the following diagram 1 -1F 2.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Plse solve 1 and 2 . if you know all the questions then solve I will give 3 upvotes!!!
![1. Find the Laplace transforms of
(a) t°sinat (b)te sin3t (c)
cosat - cos bt
(d)
+tsinat
t
1- cost
()
t
sint sin5t
cos2t – cos3t
+tsint
t
t
2. Use the Laplace transform of the second derivative to derive the transformation
a
(a) L{sinhat}=-
(b)L{coshat}=-
s² – a²
s? -a?
3. Evaluate
cosat – cos bt
(a) [te* sint dt
|dt (c)jesi
dt
t
řetsin?t
(d)
(e)je*sinht
dt (oi cos6t – cos 4t
t
dt
dt
t
4. Find the Laplace transform from the following diagram
-1F
2](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe2834ef7-f2d5-4730-a143-e3aa8443204b%2F1b199e76-2709-4c1f-8101-1727165bcb0e%2Fqcr6fyy_processed.png&w=3840&q=75)
Transcribed Image Text:1. Find the Laplace transforms of
(a) t°sinat (b)te sin3t (c)
cosat - cos bt
(d)
+tsinat
t
1- cost
()
t
sint sin5t
cos2t – cos3t
+tsint
t
t
2. Use the Laplace transform of the second derivative to derive the transformation
a
(a) L{sinhat}=-
(b)L{coshat}=-
s² – a²
s? -a?
3. Evaluate
cosat – cos bt
(a) [te* sint dt
|dt (c)jesi
dt
t
řetsin?t
(d)
(e)je*sinht
dt (oi cos6t – cos 4t
t
dt
dt
t
4. Find the Laplace transform from the following diagram
-1F
2
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)