1. Draw T/, characteristic for shunt DC motor, then give one drawback related to this characteristic. 2. Which motor is preferred for driving a heavy load without any fear of obsorbing high current? (series motor or shunt motor). Prove that? 3. If the Electrical Efficiency of DC Generator is 85%, Po = 8.5kW, Eg = : 250V. Find la.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
Q1. Answer the following briefly
1. Draw T/l characteristic for shunt DC motor, then give one drawback related to this
characteristic.
2. Which motor is preferred for driving a heavy load without any fear of obsorbing high current?
(series motor or shunt motor). Prove that?
3. If the Electrical Efficiency of DC Generator is 85%, P = 8.5kW, Eg = 250V. Find la.
4. What is the wrong of using thin wire in series field winding in DC Generator?
5. The Maximum Power Condition in DC Motors is E₁ = V/2. Is that accepted in practice?
Why?
6. Series motor should never be started without some mechanical load on it. Give the reason.
7. Describe a transformer that has the same number of turns in primary and secondary side.
8. What is the counter e.m.f. in a transformer?
9. A (250/V2) Volt transformer. If the primary emf is twice the secondary, find K and V2.
10. Draw the vector diagram for a resistive loaded transformer. Assume that the transformer with
losses but no winding resistance and no magnetic leakage and (K=1)
Transcribed Image Text:Q1. Answer the following briefly 1. Draw T/l characteristic for shunt DC motor, then give one drawback related to this characteristic. 2. Which motor is preferred for driving a heavy load without any fear of obsorbing high current? (series motor or shunt motor). Prove that? 3. If the Electrical Efficiency of DC Generator is 85%, P = 8.5kW, Eg = 250V. Find la. 4. What is the wrong of using thin wire in series field winding in DC Generator? 5. The Maximum Power Condition in DC Motors is E₁ = V/2. Is that accepted in practice? Why? 6. Series motor should never be started without some mechanical load on it. Give the reason. 7. Describe a transformer that has the same number of turns in primary and secondary side. 8. What is the counter e.m.f. in a transformer? 9. A (250/V2) Volt transformer. If the primary emf is twice the secondary, find K and V2. 10. Draw the vector diagram for a resistive loaded transformer. Assume that the transformer with losses but no winding resistance and no magnetic leakage and (K=1)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Three phase Induction Motor
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,