1. Determine the Laplace transform of the function: f(t) = e¬t sinh 2t + e¯2t cos t s - 2 2 | A. F(s): + (s – 2)2 – 1 ' (s – 1)² + 4 - | - s+ 1 1 B. F(s) = %3D (s + 1)2 – 4 ' (s + 2)² + 1 1 -1 C. F(s) = (s s – 2)² – 1 (s – 1)2 + 4 - 2 s + 2 D. F(s) = (s + 1)2 – 4 (s + 2)2 + 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Hi! I need answers in these two questions. Would need it at most 30 minutes. Thank you very much!

1. Determine the Laplace transform of the function:
f(t) = e-t sinh 2t + e¯2t cos t
s – 2
2
A. F(s)
+
(s – 2)² – 1 ' (s – 1)2 + 4
|
s + 1
1
B. F(s) =
(s + 1)2 – 4 ' (s + 2)2 + 1
s – 1
(s – 2)2 – 1' (s – 1)2 + 4
1
C. F(s) =
-
2
s + 2
D. F(s)
(s + 1)² – 4 ' (s + 2)² + 1
2. Which of the following gives the correct inverse transform of
the given F(s)?
8
F (s)
s(s² + 4)²
1 1
A. f(t) =--¬ cos 2t –
2
St sin 2t
1
В. f (t)
1
sin 2t
2
1
t
cos 2t
2
2
C. f(t)
1
1
+-sin 2t
1
t cos 2t
-
1
1
+
cos 2t
2'2
1
st sin 2t
D. f(t)
Transcribed Image Text:1. Determine the Laplace transform of the function: f(t) = e-t sinh 2t + e¯2t cos t s – 2 2 A. F(s) + (s – 2)² – 1 ' (s – 1)2 + 4 | s + 1 1 B. F(s) = (s + 1)2 – 4 ' (s + 2)2 + 1 s – 1 (s – 2)2 – 1' (s – 1)2 + 4 1 C. F(s) = - 2 s + 2 D. F(s) (s + 1)² – 4 ' (s + 2)² + 1 2. Which of the following gives the correct inverse transform of the given F(s)? 8 F (s) s(s² + 4)² 1 1 A. f(t) =--¬ cos 2t – 2 St sin 2t 1 В. f (t) 1 sin 2t 2 1 t cos 2t 2 2 C. f(t) 1 1 +-sin 2t 1 t cos 2t - 1 1 + cos 2t 2'2 1 st sin 2t D. f(t)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,