1.) Determine the laplace transform of the following functions: a.) y" – 3y' + 4y = 0; y(0) = 1, y'(0) = 5 b.) y" + 4y' + 8y = sinx; y(0) = 1, y'(0) = 0 2.) Solve the following using unit step: 0, x < 4 - 4)², x > 4 (2t + 1, 0 < tx < 2 3t, t>2 a.) g(x) = {(x – | b.) f(t) = {4" 3.) Solve the equation using discontinuous function: y" + 9y = cos(2t) – U47(t)cos(2t)
1.) Determine the laplace transform of the following functions: a.) y" – 3y' + 4y = 0; y(0) = 1, y'(0) = 5 b.) y" + 4y' + 8y = sinx; y(0) = 1, y'(0) = 0 2.) Solve the following using unit step: 0, x < 4 - 4)², x > 4 (2t + 1, 0 < tx < 2 3t, t>2 a.) g(x) = {(x – | b.) f(t) = {4" 3.) Solve the equation using discontinuous function: y" + 9y = cos(2t) – U47(t)cos(2t)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![1.) Determine the laplace transform of the following functions:
а.) у'— Зу + 4у 3D 0;B у(0) %3D 1, у (0) %3D 5
b.) y" + 4y' + 8y = sinx; y(0) = 1, y'(0) = 0
2.) Solve the following using unit step:
0, x < 4
|(x – 4)², x 2 4
(2t + 1, 0 < tx < 2
3t, t > 2
3.) Solve the equation using discontinuous function:
y" + 9y = cos(2t) – u47(t)cos(2t)
%3D
%3D
a.) g(x) = {x
b.) f(t) = {<"](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0f2319bc-4827-4b4d-989b-d7f4354dbeb1%2Fe39cb4d1-8d41-4dcc-9cf8-e421227a8473%2Fkb1v3a8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1.) Determine the laplace transform of the following functions:
а.) у'— Зу + 4у 3D 0;B у(0) %3D 1, у (0) %3D 5
b.) y" + 4y' + 8y = sinx; y(0) = 1, y'(0) = 0
2.) Solve the following using unit step:
0, x < 4
|(x – 4)², x 2 4
(2t + 1, 0 < tx < 2
3t, t > 2
3.) Solve the equation using discontinuous function:
y" + 9y = cos(2t) – u47(t)cos(2t)
%3D
%3D
a.) g(x) = {x
b.) f(t) = {<"
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)