1.) Determine the laplace transform of the following functions: a.) y" – 3y' + 4y = 0; y(0) = 1, y'(0) = 5 b.) y" + 4y' + 8y = sinx; y(0) = 1, y'(0) = 0 2.) Solve the following using unit step: 0, x < 4 - 4)², x > 4 (2t + 1, 0 < tx < 2 3t, t>2 a.) g(x) = {(x – | b.) f(t) = {4" 3.) Solve the equation using discontinuous function: y" + 9y = cos(2t) – U47(t)cos(2t)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
1.) Determine the laplace transform of the following functions:
а.) у'— Зу + 4у 3D 0;B у(0) %3D 1, у (0) %3D 5
b.) y" + 4y' + 8y = sinx; y(0) = 1, y'(0) = 0
2.) Solve the following using unit step:
0, x < 4
|(x – 4)², x 2 4
(2t + 1, 0 < tx < 2
3t, t > 2
3.) Solve the equation using discontinuous function:
y" + 9y = cos(2t) – u47(t)cos(2t)
%3D
%3D
a.) g(x) = {x
b.) f(t) = {<"
Transcribed Image Text:1.) Determine the laplace transform of the following functions: а.) у'— Зу + 4у 3D 0;B у(0) %3D 1, у (0) %3D 5 b.) y" + 4y' + 8y = sinx; y(0) = 1, y'(0) = 0 2.) Solve the following using unit step: 0, x < 4 |(x – 4)², x 2 4 (2t + 1, 0 < tx < 2 3t, t > 2 3.) Solve the equation using discontinuous function: y" + 9y = cos(2t) – u47(t)cos(2t) %3D %3D a.) g(x) = {x b.) f(t) = {<"
Expert Solution
steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,