1. Consider the statement, “For all natural numbers n, if n is prime, then n is solitary." You do not need to know what solitary means for this problem, just that it is a property that some numbers have and others do not. (a) Write the converse and the contrapositive of the statement, saying which is which. Note: the original statement claims that an implication is true for all n, and it is that implication that we are taking the converse and contrapositive of. (b) Write the negation of the original statement. What would you need to show to prove that the statement is false? (c) Even though you don't know whether 10 is solitary (in fact, nobody knows this), is the statement "if 10 is prime, then 10 is solitary" true or false? Explain. (d) It turns out that 8 is solitary. Does this tell you anything about the truth or falsity of the original statement, its converse or its contrapositive? Explain. (e) Assuming that the original statement is true, what can you say about the relationship between the set P of prime numbers and the set S of solitary numbers. Explain.

Elements Of Modern Algebra
8th Edition
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Gilbert, Linda, Jimmie
Chapter2: The Integers
Section2.2: Mathematical Induction
Problem 49E: Show that if the statement is assumed to be true for , then it can be proved to be true for . Is...
icon
Related questions
Question
1. Consider the statement, “For all natural numbers n, if n is prime, then n is solitary." You do not
need to know what solitary means for this problem, just that it is a property that some numbers
have and others do not.
(a) Write the converse and the contrapositive of the statement, saying which is which. Note:
the original statement claims that an implication is true for all n, and it is that implication
that we are taking the converse and contrapositive of.
(b) Write the negation of the original statement. What would you need to show to prove
that the statement is false?
(c) Even though you don't know whether 10 is solitary (in fact, nobody knows this), is the
statement "if 10 is prime, then 10 is solitary" true or false? Explain.
(d) It turns out that 8 is solitary. Does this tell you anything about the truth or falsity of the
original statement, its converse or its contrapositive? Explain.
(e) Assuming that the original statement is true, what can you say about the relationship
between the set P of prime numbers and the set S of solitary numbers. Explain.
Transcribed Image Text:1. Consider the statement, “For all natural numbers n, if n is prime, then n is solitary." You do not need to know what solitary means for this problem, just that it is a property that some numbers have and others do not. (a) Write the converse and the contrapositive of the statement, saying which is which. Note: the original statement claims that an implication is true for all n, and it is that implication that we are taking the converse and contrapositive of. (b) Write the negation of the original statement. What would you need to show to prove that the statement is false? (c) Even though you don't know whether 10 is solitary (in fact, nobody knows this), is the statement "if 10 is prime, then 10 is solitary" true or false? Explain. (d) It turns out that 8 is solitary. Does this tell you anything about the truth or falsity of the original statement, its converse or its contrapositive? Explain. (e) Assuming that the original statement is true, what can you say about the relationship between the set P of prime numbers and the set S of solitary numbers. Explain.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Elements Of Modern Algebra
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,