1. Consider the following hypothetical aqueous reaction: A(aq) – B(aq) A flask is charged with 0.200 mol of A in a total volume of 100.0 mL. The following data are collected: Time (min) Moles of A 20 0.140 40 0.100 60 0.070 80 0.200 0.050 a. Calculate the number of moles of B at each time in the table, assuming that there are no molecules of B at time zero and that A cleanly converts to B with no intermediates. b. Calculate the average rate of disappearance of A for each 20-min interval in units of M/s. c. Calculate the average rate of disappearance of A from the start of reaction to t 80 min in units of M/s. d. Between t = 0 min and t = 60 min, what is the average rate of appearance of B in units of M/s? Assume that the volume of the solution is constant.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
100%

How do I solve the following? 

LEARNING ACTIVITY 2
1. Consider the following hypothetical aqueous reaction:
A(aq) – B(aq)
A flask is charged with 0.200 mol of A in a total volume of 100.0 mL. The following data are collected:
Time (min)
Moles of A
20
0.140
40
0.100
60
0.070
80
0.050
0.200
a. Calculate the number of moles of B at each time in the table, assuming that there are no molecules
of B at time zero and that A cleanly converts to B with no intermediates.
b. Calculate the average rate of disappearance of A for each 20-min interval in units of M/s.
c. Calculate the average rate of disappearance of A from the start of reaction to t = 80 min in units of
M/s.
d. Between t = 0 min and t = 60 min, what is the average rate of appearance of B in units of M/s?
Assume that the volume of the solution is constant.
2. For each of the following gas-phase reactions, write the rate expression in terms of the appearance of
each product and disappearance of each reactant:
a. Os(g) + H2O(g) → 2 O2(g) + Hz(g)
b. 4 NH3(g) + 5 Oz(g) → 4 NO(g) + 6 H;O(g)
c. 2 C2H2(g) + 5 O2(g) → 4 CO2(g) + 2 H2O(g)
d. CaH;NH2(g) –→ CaHe(g) + NH3(g)
3. Consider the reaction Os(g) + H2O(g) → 2 Oz(g) + H2(g). If the concentration of Os is decreasing at the
rate of 0.025 M/s, what are the rates of change in the concentrations of Oz and H2?
Transcribed Image Text:LEARNING ACTIVITY 2 1. Consider the following hypothetical aqueous reaction: A(aq) – B(aq) A flask is charged with 0.200 mol of A in a total volume of 100.0 mL. The following data are collected: Time (min) Moles of A 20 0.140 40 0.100 60 0.070 80 0.050 0.200 a. Calculate the number of moles of B at each time in the table, assuming that there are no molecules of B at time zero and that A cleanly converts to B with no intermediates. b. Calculate the average rate of disappearance of A for each 20-min interval in units of M/s. c. Calculate the average rate of disappearance of A from the start of reaction to t = 80 min in units of M/s. d. Between t = 0 min and t = 60 min, what is the average rate of appearance of B in units of M/s? Assume that the volume of the solution is constant. 2. For each of the following gas-phase reactions, write the rate expression in terms of the appearance of each product and disappearance of each reactant: a. Os(g) + H2O(g) → 2 O2(g) + Hz(g) b. 4 NH3(g) + 5 Oz(g) → 4 NO(g) + 6 H;O(g) c. 2 C2H2(g) + 5 O2(g) → 4 CO2(g) + 2 H2O(g) d. CaH;NH2(g) –→ CaHe(g) + NH3(g) 3. Consider the reaction Os(g) + H2O(g) → 2 Oz(g) + H2(g). If the concentration of Os is decreasing at the rate of 0.025 M/s, what are the rates of change in the concentrations of Oz and H2?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 3 images

Blurred answer
Knowledge Booster
Reactor design
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The