1. Consider the following hypothetical aqueous reaction: A(aq) – B(aq) A flask is charged with 0.200 mol of A in a total volume of 100.0 mL. The following data are collected: Time (min) Moles of A 20 0.140 40 0.100 60 0.070 80 0.200 0.050 a. Calculate the number of moles of B at each time in the table, assuming that there are no molecules of B at time zero and that A cleanly converts to B with no intermediates. b. Calculate the average rate of disappearance of A for each 20-min interval in units of M/s. c. Calculate the average rate of disappearance of A from the start of reaction to t 80 min in units of M/s. d. Between t = 0 min and t = 60 min, what is the average rate of appearance of B in units of M/s? Assume that the volume of the solution is constant.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
100%

How do I solve the following? 

LEARNING ACTIVITY 2
1. Consider the following hypothetical aqueous reaction:
A(aq) – B(aq)
A flask is charged with 0.200 mol of A in a total volume of 100.0 mL. The following data are collected:
Time (min)
Moles of A
20
0.140
40
0.100
60
0.070
80
0.050
0.200
a. Calculate the number of moles of B at each time in the table, assuming that there are no molecules
of B at time zero and that A cleanly converts to B with no intermediates.
b. Calculate the average rate of disappearance of A for each 20-min interval in units of M/s.
c. Calculate the average rate of disappearance of A from the start of reaction to t = 80 min in units of
M/s.
d. Between t = 0 min and t = 60 min, what is the average rate of appearance of B in units of M/s?
Assume that the volume of the solution is constant.
2. For each of the following gas-phase reactions, write the rate expression in terms of the appearance of
each product and disappearance of each reactant:
a. Os(g) + H2O(g) → 2 O2(g) + Hz(g)
b. 4 NH3(g) + 5 Oz(g) → 4 NO(g) + 6 H;O(g)
c. 2 C2H2(g) + 5 O2(g) → 4 CO2(g) + 2 H2O(g)
d. CaH;NH2(g) –→ CaHe(g) + NH3(g)
3. Consider the reaction Os(g) + H2O(g) → 2 Oz(g) + H2(g). If the concentration of Os is decreasing at the
rate of 0.025 M/s, what are the rates of change in the concentrations of Oz and H2?
Transcribed Image Text:LEARNING ACTIVITY 2 1. Consider the following hypothetical aqueous reaction: A(aq) – B(aq) A flask is charged with 0.200 mol of A in a total volume of 100.0 mL. The following data are collected: Time (min) Moles of A 20 0.140 40 0.100 60 0.070 80 0.050 0.200 a. Calculate the number of moles of B at each time in the table, assuming that there are no molecules of B at time zero and that A cleanly converts to B with no intermediates. b. Calculate the average rate of disappearance of A for each 20-min interval in units of M/s. c. Calculate the average rate of disappearance of A from the start of reaction to t = 80 min in units of M/s. d. Between t = 0 min and t = 60 min, what is the average rate of appearance of B in units of M/s? Assume that the volume of the solution is constant. 2. For each of the following gas-phase reactions, write the rate expression in terms of the appearance of each product and disappearance of each reactant: a. Os(g) + H2O(g) → 2 O2(g) + Hz(g) b. 4 NH3(g) + 5 Oz(g) → 4 NO(g) + 6 H;O(g) c. 2 C2H2(g) + 5 O2(g) → 4 CO2(g) + 2 H2O(g) d. CaH;NH2(g) –→ CaHe(g) + NH3(g) 3. Consider the reaction Os(g) + H2O(g) → 2 Oz(g) + H2(g). If the concentration of Os is decreasing at the rate of 0.025 M/s, what are the rates of change in the concentrations of Oz and H2?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 3 images

Blurred answer
Knowledge Booster
Reactor design
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The