1. Answer the following question? Let f '(x) = (x – 3) (x +4)(x² + 1). What are the critical number(s)? В. If f '(x) > 0 for all x, then fx,) x2 b. f(x,) =(x2) for every x, f(xz) for every x, >x, d. f(x,) >f(x,) for every x,

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
1. Answer the following question?
Let f '(x) = (x – 3) (x +4)(x² + 1). What are the critical number(s)?
А.
В.
If f '(x) > 0 for all x, then
a. f(x,) <fx,) for every x, > x,
b. f(x,) =f(x2) for every x, <x2
c. f(x,) >{x,) for every x, >x,
d. f(x,) >f(x,) for every x, <x,
С.
Letf '(x) = 2x³ + 3xr² – 12x + 4. Determine the concavity of fAx) on the interval 1 <x<2.
Unknown
c. Neither concave up or concave down
d. Concave down
a.
b. Concave up
Transcribed Image Text:1. Answer the following question? Let f '(x) = (x – 3) (x +4)(x² + 1). What are the critical number(s)? А. В. If f '(x) > 0 for all x, then a. f(x,) <fx,) for every x, > x, b. f(x,) =f(x2) for every x, <x2 c. f(x,) >{x,) for every x, >x, d. f(x,) >f(x,) for every x, <x, С. Letf '(x) = 2x³ + 3xr² – 12x + 4. Determine the concavity of fAx) on the interval 1 <x<2. Unknown c. Neither concave up or concave down d. Concave down a. b. Concave up
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,