1. A child starts sledding from rest, going down a 40 m long 7.5° incline, then coasting across a horizontal stretch. The mass of the sled + child is 35 kg, and the coefficient of kinetic friction is 0.060. a. Make force diagrams for the sled + child on both the hill and the horizontal stretch. b. Resolve the weight of the sled + child along and perpendicular to the plane. c. Determine the reaction force on the sled + child. d. Determine the speed of the sled + child at the bottom of the incline. e. How far along the horizontal stretch does the sled + child travel before stopping? f. What is the total time for the ride? g. Determine how much energy that is transferred to thermal energy. h. Determine how much work is done on the sled + child by the gravitational force while the child + sled is moving along the incline. i. By considering the energy of the system and energy transformations, determine the speed of the sled + child at the bottom of the incline. Does your answer agree with part d? 2) For the following questions, start your analyses by considering at least Newton's Law of Gravitation, centripetal acceleration, Kepler's law or Energy Conservation. Take the Gravitational constant to be a. From Earth we can measure the radius of Mars using our telescopes. An estimate for it is 3.39 x 106 m. By sending an exploratory robot to Mars, we determined the acceleration due to gravity on its surface as 3.73 m/s?. Estimate the mass of Mars. b. The Earth revolves around the Sun once a year at a distance of 1.50 x 1011 m. Estimate the mass of the Sun. c. A rocket is launched straight up from Earth's surface at 2100 m/s. By ignoring air resistance, determine the maximum height it reaches?
1. A child starts sledding from rest, going down a 40 m long 7.5° incline, then coasting across a horizontal stretch. The mass of the sled + child is 35 kg, and the coefficient of kinetic friction is 0.060. a. Make force diagrams for the sled + child on both the hill and the horizontal stretch. b. Resolve the weight of the sled + child along and perpendicular to the plane. c. Determine the reaction force on the sled + child. d. Determine the speed of the sled + child at the bottom of the incline. e. How far along the horizontal stretch does the sled + child travel before stopping? f. What is the total time for the ride? g. Determine how much energy that is transferred to thermal energy. h. Determine how much work is done on the sled + child by the gravitational force while the child + sled is moving along the incline. i. By considering the energy of the system and energy transformations, determine the speed of the sled + child at the bottom of the incline. Does your answer agree with part d? 2) For the following questions, start your analyses by considering at least Newton's Law of Gravitation, centripetal acceleration, Kepler's law or Energy Conservation. Take the Gravitational constant to be a. From Earth we can measure the radius of Mars using our telescopes. An estimate for it is 3.39 x 106 m. By sending an exploratory robot to Mars, we determined the acceleration due to gravity on its surface as 3.73 m/s?. Estimate the mass of Mars. b. The Earth revolves around the Sun once a year at a distance of 1.50 x 1011 m. Estimate the mass of the Sun. c. A rocket is launched straight up from Earth's surface at 2100 m/s. By ignoring air resistance, determine the maximum height it reaches?
Related questions
Question
This is a College Physics Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 7 steps with 4 images